World 1st and It’s on 28nm FD-SOI: ST Sampling ePCM (eNVM) for Automotive MCUs

ByAdele Hars

World 1st and It’s on 28nm FD-SOI: ST Sampling ePCM (eNVM) for Automotive MCUs

STMicroelectronics is now sampling 28nm FD-SOI microcontrollers (MCUs) with embedded non-volatile memory (eNVM) based on ePCM to alpha customers. Field trials meeting the requirements of automotive applications and full technology qualification are expected in 2020. These MCUs—the world’s first to use ePCM, which stands for embedded Phase-Change Memory—will target powertrain systems, advanced and secure gateways, safety/ADAS applications, and Vehicle Electrification. (Read the full press release here.)

A cross section of the embedded-PCM bitcell integrated in the 28nm FD-SOI technology shows the heater that quickly flips storage cells between crystalline and amorphous states. (Courtesy: STMicroelectronics)

“Having applied ST’s process, design, technology, and application expertise to ePCM, we’ve developed an innovative recipe that makes ST the very first to combine this non-volatile memory with 28nm FD-SOI for high-performance, low-power automotive microcontrollers,” said Marco Monti, President Automotive and Discrete Group, STMicroelectronics. “With samples already in some lead-customers’ hands, we’re confirming the outstanding temperature performance of ePCM and its ability to meet all automotive standards, further assuring our confidence in its market adoption and success.”

ePCM presents a solution to chip- and system-level challenges, meeting automotive MCU requirements for AEC-Q100 Grade 0, operating at temperature up to +165°C. In addition, ST says its technology assures firmware/data retention through high-temperature soldering reflow processes and immunity to radiation, for additional data safety.

Architecture and performance benchmark updates were presented the most recent IEDM (December 2018 in San Francisco) in a paper entitled Truly Innovative 28nm FDSOI Technology for Automotive Micro-Controller Applications embedding 16MB Phase Change Memory (F. Arnaud et al). As of this writing, the IEDM 2018 papers are not yet posted on the IEEE Xplore Digital Library site. However, the ppt that ST presented at the conference is available here.

For more in-depth information on ePCM, see the ST PCM page. To learn more about how it compares with competing technologies such as eMRAM, read Embedded Phase-Change Memory Emerges by Mark Lapedus of SemiEngineering. Papers describing other eNVM solutions on FD-SOI were also presented at IEDM 2018. Samsung’s is entitled Demonstration of Highly Manufacturable STT-MRAM Embedded in 28nm Logic (Y. J. Song et al). GlobalFoundries’ is entitled 22-nm FD-SOI Embedded MRAM Technology for Low-Power Automotive-Grade-1 MCU Applications (K. Lee et al).

About the author

Adele Hars editor