Tag Archive chip design

GF-Dolphin 22FDX Turnkey Adaptive Body Bias Solutions Offer Big Energy Savings, Faster TTM. Design Kits Q2/19.

GlobalFoundries and Dolphin Integration are collaborating on the development of a series of adaptive body bias (ABB) solutions to improve the energy efficiency and reliability of SoCs on GF’s 22nm FD-SOI (22FDX®) process technology for a wide range of high-growth applications such as 5G, IoT and automotive. The goal of the IP is to accelerate energy-efficient SoC designs and push the boundaries of single-chip integration. The design kits with turnkey ABB solutions will be available starting in Q2 2019.

As part of the collaboration, Dolphin and GF are working together to develop a series of off-the-shelf ABB solutions for accelerating and easing body bias* implementation on SoC designs. ABB is a unique feature of FD-SOI that enables designers to leverage forward and reverse body bias techniques to dynamically compensate for process, supply voltage, temperature (PVT) variations and aging effects to achieve additional performance, power, area and cost improvements beyond those from scaling alone.

The ABB solutions in development by GF and Dolphin consist of self-contained IPs embedding the body bias voltage regulation, PVT and aging monitors and control loop as well as complete design methodologies to fully leverage the benefits of corner tightening. GF says its 22FDX technology offers the industry’s lowest static and dynamic power consumption. With automated transistor body biasing adjustment, Dolphin Integration can achieve up to 7x energy efficiency with power supply as low as 0.4V on 22FDX designs.

“We have been working with GF for more than two years on advanced and configurable power management IPs for low power and energy efficient applications,” said Philippe Berger, CEO of Dolphin Integration. “Through our ongoing collaboration with GF, we are focused on creating turnkey IP solutions that allow designers to realize the full benefit of FD-SOI for any SoC design in 22FDX.”

“In order to simplify our client designs and shorten their time-to-market, GF and our ecosystem partners are helping to pave the way to future performance standards in 5G, IoT and automotive,” said Mark Ireland, vice president of ecosystem partnerships at GF. “With the support of silicon IP providers like Dolphin Integration, new power, performance and reliability design infrastructures will be available to customers to fully leverage the benefits of GF’s 22FDX technology.”

As STMicroelectronics Fellow and Professor Andreia Cathelin has beautifully noted, “Body biasing is not an obligation. It’s an opportunity.” And GF/Dolphin clearly aim to make that opportunity a much easier and more powerful one to take advantage of.

~ ~ ~

*A note on terminology: the terms back bias and body bias are used interchangeably. Likewise the terms adaptive and dynamic when used in the FD-SOI context. Here is a quick explanation of how it works, from an ST paper from several years ago:

Back-biasing consists of applying a voltage just under the BOX of target transistors. Doing so changes the electrostatic control of the transistors and shifts their threshold voltage VT, to either get more drive current (hence higher performance) at the expense of increased leakage current (forward back-bias, FBB) or cut leakage current at the expense of reduced performance. While back-bias in planar FD is somewhat similar to body-bias that can be implemented in bulk CMOS technology, it offers a number of key advantages in terms of level and efficiency of the bias that can be applied. Back-biasing can be utilized in a dynamic way, on a block-by-block basis. It can be used to boost performance during the limited periods of time when maximum peak performance is required from that block. It can also be used to cut leakage during the periods of time when limited performance is not an issue. In other words, back-bias offers a new and efficient knob on the speed/power trade-off.

For another good discussion of body biasing in FD-SOI, you might want to check out The Return Of Body Biasing by Semiconductor Engineering’s Ann Steffora Mutschler from a couple years ago.

World 1st and It’s on 28nm FD-SOI: ST Sampling ePCM (eNVM) for Automotive MCUs

STMicroelectronics is now sampling 28nm FD-SOI microcontrollers (MCUs) with embedded non-volatile memory (eNVM) based on ePCM to alpha customers. Field trials meeting the requirements of automotive applications and full technology qualification are expected in 2020. These MCUs—the world’s first to use ePCM, which stands for embedded Phase-Change Memory—will target powertrain systems, advanced and secure gateways, safety/ADAS applications, and Vehicle Electrification. (Read the full press release here.)

A cross section of the embedded-PCM bitcell integrated in the 28nm FD-SOI technology shows the heater that quickly flips storage cells between crystalline and amorphous states. (Courtesy: STMicroelectronics)

“Having applied ST’s process, design, technology, and application expertise to ePCM, we’ve developed an innovative recipe that makes ST the very first to combine this non-volatile memory with 28nm FD-SOI for high-performance, low-power automotive microcontrollers,” said Marco Monti, President Automotive and Discrete Group, STMicroelectronics. “With samples already in some lead-customers’ hands, we’re confirming the outstanding temperature performance of ePCM and its ability to meet all automotive standards, further assuring our confidence in its market adoption and success.”

ePCM presents a solution to chip- and system-level challenges, meeting automotive MCU requirements for AEC-Q100 Grade 0, operating at temperature up to +165°C. In addition, ST says its technology assures firmware/data retention through high-temperature soldering reflow processes and immunity to radiation, for additional data safety.

Architecture and performance benchmark updates were presented the most recent IEDM (December 2018 in San Francisco) in a paper entitled Truly Innovative 28nm FDSOI Technology for Automotive Micro-Controller Applications embedding 16MB Phase Change Memory (F. Arnaud et al). As of this writing, the IEDM 2018 papers are not yet posted on the IEEE Xplore Digital Library site. However, the ppt that ST presented at the conference is available here.

For more in-depth information on ePCM, see the ST PCM page. To learn more about how it compares with competing technologies such as eMRAM, read Embedded Phase-Change Memory Emerges by Mark Lapedus of SemiEngineering. Papers describing other eNVM solutions on FD-SOI were also presented at IEDM 2018. Samsung’s is entitled Demonstration of Highly Manufacturable STT-MRAM Embedded in 28nm Logic (Y. J. Song et al). GlobalFoundries’ is entitled 22-nm FD-SOI Embedded MRAM Technology for Low-Power Automotive-Grade-1 MCU Applications (K. Lee et al).

New Bluetooth 5 RF IP from VeriSilicon Targets Wearables, IoT on GF’s 22FDX

Since about a third of all IoT devices are expected to be connected by Bluetooth, chip designers need IP solutions that will help reduce system cost and greatly improve battery life. And that’s just what VeriSilicon has announced for GlobalFoundries’ 22FDX® (FD-SOI) process.

“By taking advantage of integrated RF capabilities of FD-SOI, in particular GF’s 22FDX, our BLE 5.0 RF IP will significantly reduce the system cost and greatly boost the growth momentum of wearable products such as wireless earplugs,” said Dr. Wayne Dai, Founder, Chairman, President and CEO of VeriSilicon. 22FDX enables efficient single-chip integration of RF, transceiver, baseband, processor, and power management components. GF and VeriSilicon are working on an SoC using VeriSilicon’s BLE 5.0 RF IP in GF’s 22FDX process.

The latest iteration of Bluetooth is 5, which (like its predecessor 4) has a Low Energy (LE) RF option – but with big improvements. According to the Bluetooth website, “With 4x range, 2x speed and 8x broadcasting message capacity, the enhancements of Bluetooth 5 focus on increasing the functionality of Bluetooth for the IoT.” BLE 5.0 was designed for very low power operation and is optimized for the sorts of short burst data transmissions you’ll get with IoT.

On the strength of VeriSilicon’s innovative RF architecture and by leveraging GF’s 22FDX technology, VeriSilicon says the new IP product achieves significant improvements in power, area, and cost compared to current offerings, so it will better serve the emerging and increasing wearable devices and IoT applications space.

“VeriSilicon’s BLE IP complements GF’s 22FDX FD-SOI capabilities and is well positioned to support the explosive growth of low-power IoT and connected devices,” said Mark Ireland, vice president of ecosystem partnerships at GF. “Together, we broaden our IP and services to further enable our mutual clients to provide power and cost efficient solutions.”

VeriSilicon BLE 5.0 RF IP includes a transceiver that is compliant with the BLE 5.0 specification and supports GFSK modulation and demodulation. The silicon measurement shows that the sensitivity can be tested up to -98dBm with less than 7mW power dissipation in typical conditions. It largely improves battery life for low power IoT applications. In addition, the RF transceiver saves 40% area compared to a similar implementation on 55nm bulk CMOS. Besides the RF transceiver, this IP integrates on-chip balun, TX/RX switch and 32K RC OSC driver to save the BOM. Moreover, high efficiency DC/DC and LDOs are also available for power management.

You can read the full press release in Chinese here and in English here.

QuickLogic ultra-low power eFPGA on GF’s 22FDX FD-SOI and in PULP/RISC-V SoC

(Courtesy: PRNewsfoto/QuickLogic Corporation)

Some great pieces of FD-SOI news from QuickLogic. The company recently demonstrated its ultra-low power ArcticPro™ embedded FPGA (eFPGA) solutions at the GlobalFoundries Technology Conferences in Santa Clara, California, Munich and Shanghai. The technology is available now.

ArcticPro is the industry’s first eFPGA offering for GF’s 22FDX® process (btw they’ve been shipping it in volume for GF’s 65nm and 40nm bulk processes for years). The company says its ultra-low power eFPGA architecture and mature software offer semiconductor and system companies the ability to integrate programmable hardware accelerators to lower power consumption and the flexibility to reconfigure a device’s functionality in the field.

(Image courtesy: QuickLogic)

QuickLogic has also announced that the technical university ETH Zurich  will integrate QuickLogic’s ArcticPro technology onto the university’s PULP platform. PULP is a silicon-proven open-source parallel platform for ultra-low power computing created with the objective of delivering high compute bandwidth combined with high-energy efficiency. ETH will become the first licensee of eFPGA technology from QuickLogic on GF’s 22FDX process node. They will develop an SoC integrating ETHZ’s open-source RISC-V cores and eFPGA technology, enabling users to offload critical functions from the processor(s) and implement them in eFPGA fabric. This approach creates multiple hardware co-processors that increase system efficiency and performance while decreasing power consumption.

“The main goal of the PULP program is to use a multi-disciplinary approach to achieve extremely high-power efficiency for computing applications,” said QuickLogic CTO Dr. Timothy Saxe. “QuickLogic has a tremendous depth of experience in achieving low power consumption across a broad range of applications, including AI and IoT at the edge and security, and we look forward to contributing what we’ve learned along with our eFPGA technology to this groundbreaking initiative in low power computing.”

ETH’s PULP platform with the fully integrated eFPGA is expected to be available Q1′ 2019.

QuickLogic is part of GF’s fast-growing FDXcelerator™ partner ecosystem, offering customers ultra-low power (eFPGA) Intellectual Property, complete software tools and a compiler.

GF’s FD-SOI Has Delivered >$2 Billion in Design Win Revenues, 50+ Clients

GlobalFoundries has announced that the company’s 22nm FD-SOI (22FDX®) technology has delivered more than two billion dollars of client design win revenue. With more than 50 client designs, 22FDX is being used in power-optimized chips across a broad range of high-growth applications such as automotive, 5G connectivity and IoT.

Their clients chose it for the significant reductions in power and die size relative to a traditional bulk CMOS process, says the company. 22FDX offers the industry’s lowest operating voltage, delivering up to 500MHz frequencies at only 0.4 volts. The technology also delivers efficient single-chip integration of RF, transceiver, baseband, processor, and power management components, “…providing an unparalleled combination of high performance RF and mmWave functionality with low-power, high density logic for devices that require long-lasting battery life, increased processing capability, and connectivity.”

22FDX is in early production, with yields and performance matching client expectations. A recent VLSI Research survey indicated that FD-SOI technology is seen as a complementary technology to FinFET. It’s gaining traction in application spaces such as IoT, where power consumption is important and the product life is relatively short.

“We’re only just beginning,” said GF CEO Tom Caulfied. “We have found a way to separate ourselves from the pack by emphasizing our differentiated FD-SOI roadmap and client-focused offerings that are poised to enable connected intelligence. We will continue to build on our momentum and look for ways to expand our reach to address the evolving needs of the industry.”

Here’s a sampling of customer quotes from the press release (read more here):

  • “At Synaptics, as we expand upon our industry-leading mobile and PC businesses to include delivering new and innovative products that address the booming IoT market, we require the best available technologies to enable us to deliver top-notch solutions including voice and multimedia processing capabilities for our customers,” said the company’s CEO, Rick Bergman. “GF’s 22FDX technology delivers a potent mix of low static and dynamic power along with excellent performance to give us a great platform for our world-class products.”
  • “As our customers increasingly demand more from their mobile experiences, our partnership with GF on its 22FDX technology is critical to differentiate ourselves in the competitive market and deliver powerful and efficient mobile SoCs,” said Rockchip CEO Min Li.
  • “Our goal has always been to provide more secure, connected experiences for drivers. Combining our leadership in radar technology with GF’s 22FDX automotive-qualified process, we are able to deliver a cost-effective, high performance, low power solution that opens new opportunities for car manufacturers to provide better experiences for drivers around the world,” said Kobi Marenko, CEO of Arbe Robotics.
  • “The automotive industry realizes that assisted driving solutions require more camera information besides Radar and Lidar, integrating information from multiple cameras. The resulting DreamChip multi-core vision processor platform, based on the 22FDX process is providing European auto makers and Tier 1 automotive component suppliers with a platform from which they can create custom derivatives with a massively reduced time to market,” said Dream Chip Technologies CEO Jens Benndorf.
  • “With 22FDX, the value proposition for us is the potential power and area savings, two key metrics for our highly optimized LTE NB-IoT and CAT-M chipsets. In addition, leveraging the growing ecosystems of IP available in the 22FDX process helps to accelerate time to market,” said Peter Wong, CEO at Riot Micro, which designs purpose-built silicon for wireless IoT applications. (Read more about that here.)

GF adds that it is preparing to deliver 12FDX™ technology, which will provide a full node scaling benefit and improved power efficiency for a new generation of applications, from edge-node artificial intelligence and AR/VR to 5G networking and ADAS.

Foundries Ramp FD-SOI, VLSI Survey Shows Why – More Highlights from the Silicon Valley SOI Symposium (Part 2)

Good news: there are far fewer bigoted extremists out there when it comes to FD-SOI vs. FinFETs. People want the best technology for their application. It’s that simple. That’s a key piece of news from the updated survey by Dan Hutcheson, CEO of VLSI Research, which he presented in the afternoon session of the SOI Consortium’s 2018 SOI Symposium in Silicon Valley

The afternoon then featured presentations by foundry partners, which I’ll cover here.

Also in the afternoon were presentations by wafer-maker Simgui, some innovative start-ups leveraging FD-SOI for custom SoCs and the final panel discussion. I’ll cover those in Part 3 of this series.

BTW, if somehow you missed my coverage of the morning sessions about very cool new products and projects from NXP, Sony, Audi, Airbus and Andes Technology, be sure to click here to read it.

The presentations are starting to be posted on the SOI Consortium Events page – but some won’t be. Either way, I’ll cover them here.

VLSI Research

A couple years ago at the annual SOI Symposium in Silicon Valley, Dan Hutcheson presented results of a survey he did (ASN covered it – you can still read about it here). At the 2018 event, he presented an update, which is now posted. You can get it here.

The FD-SOI roadmap and IP availability are no longer issues for decision makers, he found. The 14nm branch – do you go FinFET or FD-SOI? – is gone. “Fins and FD are complementary,” he observed. Most people said they’d consider using both and running two roadmaps, choosing whichever technology is appropriate to a given design.

(Courtesy: VLSI Research, SOI Consortium)

From a transistor viewpoint, the top reasons to choose FD-SOI is that it’s better for analog and has lower leakage/parastics. It’s perceived as better for complex, high mixed-signal SoCs, and especially for RF and sensor integration. In fact, people see RF as the new mixed-signal, wherein FD-SOI is uniquely positioned for 5G and mmWave.

From a business viewpoint, FD-SOI is perceived to have real advantages. In particular, FD-SOI wins when it comes to keeping down design costs, manufacturing costs and time-to-market. IoT is still the hottest target market for FD-SOI, to which he adds high growth expected in automotive and medical.

Samsung

With 20 tape-outs in 2018, Samsung is seeing an acceleration in its FD-SOI business. “The trend is healthy,” said Hong Hoa, SVP of the company’s foundry business. FD-SOI, he continued, is on a “differentiation path.”

Samsung’s 28nm FD-SOI process, called 28FDS is at full maturity with very strong yields. They’re seeing more customers and a wider range of applications. The design infrastructure, silicon-verified IP and methodologies are also all mature. They have optimal implementation and verification guidelines for body bias design, a body bias memory usage guide, and a body bias generator integration guide. The process supports Grade 1 automotive, and will be qualified for Grade 2 in a few weeks.

FD-SOI, Hoa reminded the audience, offers superior RF performance compared to both planar bulk and 14nm FinFET. The Samsung strategy is to first provide a base for for the FD-SOI process, then add RF and eMRAM. The base for 28nm was done in 2016; they added RF in 2017 and eMRAM this year.

The Samsung platform for IoT applications integrates both RF and eMRAM to support multi-function needs in a single platform. Lead customers are already working with eMRAM in their designs, he added. (BTW, Samsung has a really nice video explaining their eMRAM offering – you can see it on YouTube here.)

The basic PDK for the Samsung 18nm FD-SOI process (18FDS) will be available in September 2018, with full production slated for fall of 2019. It will deliver a 24% increase in performance, a 38% decrease in power, and a 35% decrease in area for logic. RF for the 18FDSplatform will be ready by the end of this year, and eMRAM beginning in 2019.

GlobalFoundries

With design wins from 36 customers underway, 12 of which are taping out in 22FDX (GF’s 22nm FD-SOI process) this year, the market has validated FDX for differentiation, said GF SVP Dr. Bami Bastani. And indeed, designers are using it for a wide array of applications across North America, Europe, Asia/Pacific and Japan.

Customers in the North America are designing in 22FDX for NB-IoT, industrial, RF/analog, mobile, network switches and cryptocurrency applications. In Europe, it’s more or less the same plus automotive/mmWave, optical transmission, wireless BTS and AI/ML. In Asia Pacific/Japan the mix is similar to Europe.

Bastani sees the three big enablers as the the strengths of the roadmap, the ecosystem and multi-sourcing from Dresden and Chengdu (where they’re already equipping the cleanrooms). He also tipped his hat in acknowledgment to the partnership with FD-SOI wafer supplier Soitec, noting that they have gone the extra mile to match GF’s requirements.

So that was the first part of a great afternoon.  As mentioned above, my next post (part 3) will cover a very informative presentation by wafer-maker Simgui on the markets in China, plus talks by some innovative start-ups leveraging FD-SOI for custom SoCs and the final panel discussion.

 

GF Simplifies RF-SOI and FD-SOI Design for 5G with New Partnership Program

GlobalFoundries’ new ecosystem partner program, called RFwave™, aims to simplify RF design and help customers reduce time-to-market for a new era of wireless devices and networks (read the full press release here). The program aims to give designers a low-risk, cost-effective path to highly optimized solutions that leverage GF’s platforms including RF on FD-SOI and RF-SOI. The target is wireless applications such as IoT across various wireless connectivity and cellular standards, standalone or transceiver integrated 5G front end modules, mmWave backhaul, automotive radar, small cell and fixed wireless and satellite broadband.

As such, the RFwave™ partner program provides GF customers with IP design elements, EDA tools, design consultation and services and OSAT product packaging and test solutions. These products and services are validated, and comprise a plug-and-play catalog of design solutions. With this level of integration, GF customers can create high-performance designs while minimizing development costs.

Bami Bastani, senior vice president of GF’S RF Business Unit, says, “As a leader in RF, GF’s RFwave program takes industry collaboration to a new level, enabling our customers to build differentiated, highly integrated RF-tailored solutions that are designed to accelerate the next wave of technology.”

Initial members of the RFwave Partner Program are: asicNorth, Cadence, CoreHW, CWS, Keysight Technologies, Spectral Design, and WEASIC.

Silicon Valley FD-SOI 2018 Training Day is April 27th – Don’t Miss It!

Following the immense success of last years FD-SOI training day in Silicon Valley, the SOI Consortium has another one planned for the end of April this year. If you want to start learning how to leverage FD-SOI in your chip designs, this is a great place to start. Click here for information on how to sign up.

ST Fellow Dr. Andreia Cathelin has put together another great line-up. World renowned professors and experts from industry will deliver a series of four training sections of 1.5 hours each, focused on energy efficient and low-power, low-voltage design techniques for analog, RF, high-speed, mmW and mixed-signal design.

You’ll learn about design techniques that take full advantage of the unique features of FD-SOI, including body biasing capabilities that further enhance the excellent analog/RF performances of these devices.

Each section of this training day will take you through concrete design examples that illustrate new implementation techniques enabled by FD-SOI technologies at the 28nm and 22nm nodes – and beyond.

The design examples will cover basic building blocks through SoC implementations. A global Q&A session will close the day.

Here’s a little more info on how the day will unfold. Click on the slides to see them in full screen.

Morning sessions

FDSOI-specific design techniques for analog, RF and mmW applicationsAndreia Cathelin, Fellow, STMicroelectronics

Quick preview from Andreia Cathelin’s FD-SOI training session (Courtesy: STMicroelectronics, SOI Consortium)

Andreia Cathelin is ST’s key design scientist for all advanced CMOS technologies, and is arguably the world’s leading expert on leveraging FD-SOI in high-performance, low-power RF/AMS SoCs. Her course will first present a very short overview of the major analog and RF technology features of 28nm FDSOI technology. Then the focus moves to the benefits of FD-SOI technology for analog/RF and millimeter-wave circuits. She’ll give design examples such as analog low-pass filters, inverter-based analog amplifiers and 30GHz and 60GHz Power Amplifiers, as well as mmW oscillators. There will be particular focus on the advantages of body biasing and special design techniques offering state-of-the-art performance.

Circuit Design Techniques in 22nm FD-SOI for 5G 28GHz ApplicationsFrank Zhang, Principal Member of Technical Staff, GlobalFoundries

Quick preview from Frank Zhang’s FD-SOI training session (Courtesy: GlobalFoundries, SOI Consortium)

Frank Zhang has designed chips using GF’s 22nm FD-SOI (22FDX) process for WLAN, 5G cellular and automotive radar applications. His course will focus on how to take advantages of FD-SOI’s high-frequency performance at relatively low-current density to design high performance RF/mmWave circuits. Examples circuits include a 28GHz LNA, a 28GHz PA and an RF switch for 5G applications. The FD-SOI advantages such as low capacitance, high breakdown voltage and high-output impedance will be exploited in these design examples. This course will also discuss how to extend these techniques to applications at higher frequencies and/or higher current densities that are subject to extreme temperatures and EM requirements.

Afternoon sessions

Energy-Efficient Design in FDSOIBora Nikolic, Professor, UC Berkeley

Quick preview from Bora Nikolić’s FD-SOI training session (Courtesy: UC Berkeley, SOI Consortium)

Borivoje (“Bora”) Nikolić is known as one of the world’s top experts in body-biasing for digital logic (he and his team have designed more than ten chips in ST’s 28nm FD-SOI.) If you missed it, his team’s RISC-V chip was cited as one of Dr. Cathelin’s “Outstanding 28nm FD-SOI Chips Taped Out Through CMP” – read more about that here. His talk at the training day will present options for energy-efficient mixed-signal and digital design in FD-SOI technologies. He’ll explain how to generate body bias and use it to improve efficiency, with examples in RF and baseband building blocks, temperature sensors, data converters and voltage regulators. The techniques will be presented in the context of UC Berkeley’s latest RISC-V-based SoC, designed to operate in a very wide voltage range using 28nm FD-SOI.

mm-Wave and Fiber-Optics Design in FD-SOI CMOS Technologies – Sorin Voinigescu, Professor, University of Toronto

Quick preview from Sorin Voinigescu’s FD-SOI training session (Courtesy: U. Toronto, SOI Consortium)

Sorin Voinigescu is a world renowned expert on millimeter-wave and 100+Gb/s ICs and atomic-scale semiconductor device technologies. His lecture will cover the main features of FD-SOI CMOS technology and how to efficiently use its unique features and suitable circuit topologies for mm-wave and broadband SoCs. He’ll begin with an overview of the impact of the back-gate bias and temperature on the measured I-V, transconductance, fT, and fMAX characteristics. Then he’ll compare the maximum available gain, MAG, of FDSOI MOSFETs with those of planar bulk CMOS and SiGe BiCMOS transistors through measurements up to 325 GHz. Next, he’ll provide biasing, sizing and step-by-step design examples for VCO, doubler, switches, PA, large swing optical modulator drivers and quasi-CML circuit topologies and layouts that make efficient use of the back-gate bias to overcome the limitations associated with the low breakdown voltage of 20nm and 12nm FD-SOI CMOS technologies.

Sign Up Now!

With over 100 attendees filling every chair in the auditorium, last year’s training day was sold out. Although it was in Silicon Valley, people actually flew in from all over the world to be there. During the Q&A at the end, most everyone prefaced their questions by saying, “Thank you. I really learned a lot today.”

2018 will be no different – except that it’s sure to sell out even faster. Please note, though, that this is not a free event, so only the attendees will get copies of the slide decks.

Here’s key info you need to sign up. See you there!

What: SOI Consortium’s FD-SOI Training Day

When: 27 April 2018, 7:30am – 5pm.

Where: Crowne Plaza San Jose, Milpitas CA (parking is free)

Registration fee: US $485.00 (includes training book, breakfast, box lunch and refreshments during breaks)

How to sign up: Click here to go directly to the registration site.

Silicon! Dream Chips’ ADAS SoC in 22FDX Posts Record Power Efficiency

They’ve got initial silicon of Dream Chips’ ADAS SoC fabbed in GlobalFoundries’ 22FDX (FD-SOI) technology, and it’s got record power efficiency (read the full press release here). The chip offers high performance image acquisition and processing capabilities and supports AI / Neural Network (NN) vision operation with a total of 1 TOPS at 500 MHz on 4 parallel engines. With all functions including quad-core Arm® Cortex®-A53, Tensilica DSPs, and INVECAS’ LPDDR4-Interfaces activated, the SoC shows single digit power dissipation without the need for forced cooling, which is of significant importance for embedding in automotive environments.

Courtesy: Dream Chips Technologies

Targeting automotive computer vision applications, the SoC was created in close cooperation with Arm, ArterisIP, Cadence, GF, and INVECAS as part of the European Commission’s ENIAC THINGS2DO reference development platform, where about 40 partners in Europe cooperated to propel the FDSOI-Design Ecosystem.

Of particular importance is the new and reduced power footprint of this SoC in 22FDX-technology from GF. AI/NN-operation for image recognition is available today, but most of the solutions need active cooling. Implementation of Dream Chip Technologies’ SoC on GF’s 22FDX platform demonstrated single digit Watt and cooling targets for designers managing power dissipation. If needed, the SoC bears the potential to increase the performance even further up to 2 TOPS at 1.0 GHz by applying GLOBALFOUNDRIES’s forward body-bias capabilities and other optimization techniques.

The jointly developed ADAS SoC platform from Dream Chip Technologies is available now. Part of GF’s FDXcelerator™ Partner Program, Dream Chip  is the largest independent German Design Service company specialized in the development of large ASICs, FPGAs, embedded software and systems with a strong application focus on automotive vision systems (ADAS).