Tag Archive FDSOI

FD-SOI Training: Over 220 Attend 1st SOI Academy in Shanghai

There were over 220 participants at the recent SOI Academy FD-SOI Training event organized in Shanghai. The event extended over two days, with the first day covering a basic introduction to the technology as well as the ecosystem worldwide and in China. The second day was hands-on professional training. Attendees got a comprehensive understanding of how to leverage the benefits and flexibility of FD-SOI design techniques for low-power chips including logic, mixed-signal/RF and analog blocks.

They had a great line-up of experts from whom to learn – check out the agenda here. There was also a follow-up press release (in Chinese) from SITRI here. There will be more of these SOI Academy events in cities across China in the year to come – we’ll keep you posted (and of course, keep checking back for news on the Consortium’s Events page).

SOI Academy ’18 keynotes by: Dr. Mark Ding, CEO, SITRI; Dr. Carlos Mazure, EVP Soitec and Chairman/Executive Director SOI Consortium. Dr. Julien Arcamone, EVP Leti. (Images courtesy: SITRI). Lower right: the hands-on FD-SOI training.

The two-day seminar and hands-on FD-SOI design training was (superbly!) co-organized by SITRI and Leti, with the support of the SOI Industry Consortium at the Jiading SIMIT campus outside of Shanghai.

Just to put this in perspective, SIMIT and SITRI are absolutely key players in China’s chip ecosystem. SIMIT is the Shanghai Institute of Microsystem and Information Technology, one of the most venerable institutes in the Chinese Academy of Science (CAS) and one of the world’s earliest pioneers in SOI. SITRI is the Shanghai Industrial μTechnology Research Institute, an international innovation center focused on globally accelerating innovation and commercialization of More-than-Moore for IoT. Both institutions are under the aegis of Dr. Xi Wang, Chairman of SITRI, Director General of SIMIT, Academician of CAS, and champion of all things SOI in China.

At this Shanghai event, the participants came from industry (including big companies, SMEs and startups) and technical institutions. In fact as well as attendees from Shanghai people voyaged from other cities such as Shenzhen and Chengdu.

The designers participating to the FD-SOI training day were all experienced in design and highly motivated in learning FD-SOI design, notes Carlos Mazure, Chairman & Executive Director of the SOI Industry Consortium, and Executive VP of Soitec. “This made it possible to dive into the specificities of FD-SOI,” he said, adding that, “The focus on RF was very timely.”

Day 1: Intro to FD-SOI

The first afternoon opening keynotes were made by SITRI CEO Dr. Mark Ding and Leti EVP Dr. Julien Arcamone. These were followed by overview talks by execs from Soitec, Verisilicon and GlobalFoundries.

After a lively networking break, three talks delved into FD-SOI technology. The first was by Professor Sorin Cristoloveanu, Laureate of the IEEE Andrew Grove Award and Director at the CNRS (the French National Center for Scientific Research – the largest governmental research organization in France and the largest fundamental science agency in Europe). He covered device physics and characterization techniques. This was followed by talks on the technology by Soitec Fellow Bich-Yen Nguygen, and by Dr. Christophe Tretz, IBM Sr. Engineer on product design methodology.

The day ended with a dinner, where Professor Cristoloveanu says enthusiastic technical discussions continued unabated (and continued even further in follow-up emails), lots of business cards were exchanged, and opportunities for further education were explored.

Day 2: Hands-on Training

The second day, designers got hands-on training from Leti experts using FD-SOI PDKs, first in the morning on digital, then in the afternoon on RF. Everyone loved the lively discussion and in-depth exchanges between the experts and the designers. They agreed that FD-SOI has important applications and differentiated competitive advantages for IoT, 5G, automotive, AI and other fields. At the end of the training, Leti and SITRI jointly issued SOI Academy certificates of completion to the designers.

Feedback from participants was very good. Some asked for further education and for hands-on testimonials from companies that are already designing and manufacturing products on FD-SOI.

“The participants were focused, motivated, involved, with good knowledge, which helped make the three hours of Digital training effective,” said Dr. Alexandre Valentian, Leti Sr. Expert, Digital Design. “The IT team was very helpful in setting up the training, the students accounts and the hardware infrastructure.”

“The training on Basics of FD-SOI RF circuit was a great success thanks to the efficiency of our Chinese partners and also thanks to the enthusiasm and the good level of our trainees. As senior Expert of CEA Leti I was really impressed by the professionalism of the organization team. For all these reasons, I’m very glad to have had the opportunity to contribute to the 2018 SOI Academy,” said Dr. Baudouin Martineau, Leti Sr. Expert, RFIC Design & Technologies.

“The professionalism, efficiency and enthusiasm of our Chinese partners and the level and technical relevance of all trainees made the training on Basics of FD-SOI RF circuit a great success and fruitful experience,” added Frédéric Hameau, Sr. RF Research Engineer, Leti Project Leader, Architecture, IC Design & Embedded Software Division, RF Architectures and ICs Laboratory. “It was a pleasure to get the opportunity to be part of this first edition of SOI academy 2018.”

The organizers would like to thank the sponsors, including: the SOI Consortium and its members Soitec, VeriSilicon, GlobalFoundries, Simgui and Cadence, as well as Mentor, ProPlus and other companies and institutions in China and worldwide. Dr. Mazure notes that special recognition must go to Dr. Julien Arcamone, EVP, Leti-CEA and to Qing Wang-Bousquet, SITRI representative, for the perfect and smooth organization, and to the Leti instructors, who are international experts and highly committed.

“As one of the main initiators and organizers of the 2018 SOI Academy, I wanted to personally thank all of you for your respective contribution to this first edition of the SOI Academy,” concludes Dr. Arcamone. “Undoubtedly, it was a great success, very well organized and fluid and we can be proud of that.”

EuroSOI-ULIS (April 2019, Grenoble) + Free FD-SOI RF Technology Workshop for 5G

If you’ve never been, you should put it on your list. EuroSOI is one of those seminal conferences where you get a front-row seat to emerging technologies. It provides an interactive forum for scientists and engineers working in the field of new materials and advanced nanoscale devices. In fact, some of the leading technologies enabled by SOI that are now in the mainstream got their start at this conference. Within a few years of being presented here, the best work continues to evolve and star in the “big” conferences like IEDM and VLSI.

The list of luminaries on the steering and technical committees is a veritable who’s who of the SOI research ecosystem, including two winners of the IEEE Andrew Grove Award: Technical Chair Jean-Pierre Colinge and Sorin Cristoloveanu. So, if you want to get in on the ground floor of next-gen SOI, or just get a look at the early stages of the pipeline, this is a great place to do it.

One of the key objectives is to promote collaboration and partnership between players in academia, research and industry. As such it provides opportunities for cross-fertilization across materials, devices and design. The networking is excellent, and the gala dinner is always an affair to remember.

This year, papers in the following areas have been solicited:

  • Advanced SOI materials and wafers. Physical mechanisms and innovative SOI-like devices
  • New channel materials for CMOS: strained Si, strained SOI, SiGe, GeOI, III-V and high mobility materials on insulator; carbon nanotubes; graphene and other two-dimensional materials.
  • Properties of ultra-thin films and buried oxides, defects, interface quality. Thin gate dielectrics: high-κ materials for switches and memory.
  • Nanometer scale devices: technology, characterization techniques and evaluation metrics for high performance, low power, low standby power, high frequency and memory applications.
  • Alternative transistor architectures including FDSOI, DGSOI, FinFET, MuGFET, vertical MOSFET, Nanowires, FeFET and Tunnel FET, MEMS/NEMS, Beyond-CMOS nanoelectronic devices.
  • New functionalities in silicon-compatible nanostructures and innovative devices representing the More than Moore domain, nanoelectronic sensors, biosensor devices, energy harvesting devices, RF devices, imagers, etc.
  • CMOS scaling perspectives; device/circuit level performance evaluation; switches and memory scaling. Three-dimensional integration of devices and circuits, heterogeneous integration.
  • Transport phenomena, compact modeling, device simulation, front- and back-end process simulation.
  • Advanced test structures and characterization techniques, parameter extraction, reliability and variability assessment techniques for new materials and novel devices.
  • Emerging memory devices.

Accepted papers appear in the conference proceedings in the IEEE Xplore® digital library. The authors of the best papers are invited to submit a longer version for publication in a special issue of Solid-State Electronics. A best paper award will be attributed to the best paper by the SiNANO institute.

EuroSOI-ULIS kicks off a full week of activities in Grenoble. The day after the conference, Incize and Soitec are sponsoring an excellent, free workshop on FD-SOI RF technologies for 5G: materials, devices, circuits and performance. The’ve got a terrific line-up of presentations planned.

And towards the end of the week, there are other important satellite events. The 1st open IRDS International Roadmap for Devices and Systems European Conference (April 4th, 2019) is jointly organized by the USA, Japan and EU, and sponsored by the IEEE and SiNANO Institute. Then the week finishes out with the IEEE ICRC International Conference on Rebooting Computing (April 5th, 2019).

Grenoble the first week of April 2019 is clearly the place to be.

AdaSky’s Far Infrared for ADAS on ST’s FD-SOI

Automakers are currently evaluating prototypes of Viper from AdaSky, a Far Infrared (FIR) thermal camera that embeds custom silicon co-designed with and manufactured by ST in 28nm FD-SOI. The complete sensing solution aims to enable autonomous vehicles to see and understand the roads and their surroundings in any condition.

“With the help of ST, we have created the first high-resolution thermal camera for autonomous vehicles with minimal size, weight, and power consumption–and no moving parts. ST’s access to, and expertise in, ultra-low-power design, IP that is fully qualified for automotive applications, and 28nm FD-SOI technology have been vital to meeting the severe power constraints that would challenge our sensors’ performance,” said Amotz Kats, Vice President Hardware, AdaSky. “We’re in a position to deliver a breakthrough solution to revolutionize and disrupt the autonomous vehicle market because of ST’s mastery of automotive qualification and its strong manufacturing supply chain, which grants reliability, long-term support, and business continuity to car makers throughout the whole life of their production.”

Passive infrared vision, like that in AdaSky’s Viper, when used in a fusion solution, can help close the gaps to provide accurate sight and perception without fail in dynamic lighting conditions, in direct sunlight, in the face of oncoming headlights, and in harsh weather.

The new camera uses an FIR micro-bolometer sensor to detect the temperature of an object. In an ADAS solution, Viper uses proprietary algorithms based on Convolutional Neural Networks to classify obstacles and show them in a cockpit display to give the driver an early warning. This warning comes several seconds earlier than it would when using a conventional sensor in the visible wavelength and is even faster than what is possible with the human eye.

The two companies say that the Far-Infrared thermal camera extends ADAS sensor fusion capability with a new layer of information, helping pave the way to fully-autonomous driving in any condition. Prototypes are now under evaluation by carmakers with initial production targeted for 2020. (Read the full press release here.)

Silicon Valley FD-SOI 2018 Training Day is April 27th – Don’t Miss It!

Following the immense success of last years FD-SOI training day in Silicon Valley, the SOI Consortium has another one planned for the end of April this year. If you want to start learning how to leverage FD-SOI in your chip designs, this is a great place to start. Click here for information on how to sign up.

ST Fellow Dr. Andreia Cathelin has put together another great line-up. World renowned professors and experts from industry will deliver a series of four training sections of 1.5 hours each, focused on energy efficient and low-power, low-voltage design techniques for analog, RF, high-speed, mmW and mixed-signal design.

You’ll learn about design techniques that take full advantage of the unique features of FD-SOI, including body biasing capabilities that further enhance the excellent analog/RF performances of these devices.

Each section of this training day will take you through concrete design examples that illustrate new implementation techniques enabled by FD-SOI technologies at the 28nm and 22nm nodes – and beyond.

The design examples will cover basic building blocks through SoC implementations. A global Q&A session will close the day.

Here’s a little more info on how the day will unfold. Click on the slides to see them in full screen.

Morning sessions

FDSOI-specific design techniques for analog, RF and mmW applicationsAndreia Cathelin, Fellow, STMicroelectronics

Quick preview from Andreia Cathelin’s FD-SOI training session (Courtesy: STMicroelectronics, SOI Consortium)

Andreia Cathelin is ST’s key design scientist for all advanced CMOS technologies, and is arguably the world’s leading expert on leveraging FD-SOI in high-performance, low-power RF/AMS SoCs. Her course will first present a very short overview of the major analog and RF technology features of 28nm FDSOI technology. Then the focus moves to the benefits of FD-SOI technology for analog/RF and millimeter-wave circuits. She’ll give design examples such as analog low-pass filters, inverter-based analog amplifiers and 30GHz and 60GHz Power Amplifiers, as well as mmW oscillators. There will be particular focus on the advantages of body biasing and special design techniques offering state-of-the-art performance.

Circuit Design Techniques in 22nm FD-SOI for 5G 28GHz ApplicationsFrank Zhang, Principal Member of Technical Staff, GlobalFoundries

Quick preview from Frank Zhang’s FD-SOI training session (Courtesy: GlobalFoundries, SOI Consortium)

Frank Zhang has designed chips using GF’s 22nm FD-SOI (22FDX) process for WLAN, 5G cellular and automotive radar applications. His course will focus on how to take advantages of FD-SOI’s high-frequency performance at relatively low-current density to design high performance RF/mmWave circuits. Examples circuits include a 28GHz LNA, a 28GHz PA and an RF switch for 5G applications. The FD-SOI advantages such as low capacitance, high breakdown voltage and high-output impedance will be exploited in these design examples. This course will also discuss how to extend these techniques to applications at higher frequencies and/or higher current densities that are subject to extreme temperatures and EM requirements.

Afternoon sessions

Energy-Efficient Design in FDSOIBora Nikolic, Professor, UC Berkeley

Quick preview from Bora Nikolić’s FD-SOI training session (Courtesy: UC Berkeley, SOI Consortium)

Borivoje (“Bora”) Nikolić is known as one of the world’s top experts in body-biasing for digital logic (he and his team have designed more than ten chips in ST’s 28nm FD-SOI.) If you missed it, his team’s RISC-V chip was cited as one of Dr. Cathelin’s “Outstanding 28nm FD-SOI Chips Taped Out Through CMP” – read more about that here. His talk at the training day will present options for energy-efficient mixed-signal and digital design in FD-SOI technologies. He’ll explain how to generate body bias and use it to improve efficiency, with examples in RF and baseband building blocks, temperature sensors, data converters and voltage regulators. The techniques will be presented in the context of UC Berkeley’s latest RISC-V-based SoC, designed to operate in a very wide voltage range using 28nm FD-SOI.

mm-Wave and Fiber-Optics Design in FD-SOI CMOS Technologies – Sorin Voinigescu, Professor, University of Toronto

Quick preview from Sorin Voinigescu’s FD-SOI training session (Courtesy: U. Toronto, SOI Consortium)

Sorin Voinigescu is a world renowned expert on millimeter-wave and 100+Gb/s ICs and atomic-scale semiconductor device technologies. His lecture will cover the main features of FD-SOI CMOS technology and how to efficiently use its unique features and suitable circuit topologies for mm-wave and broadband SoCs. He’ll begin with an overview of the impact of the back-gate bias and temperature on the measured I-V, transconductance, fT, and fMAX characteristics. Then he’ll compare the maximum available gain, MAG, of FDSOI MOSFETs with those of planar bulk CMOS and SiGe BiCMOS transistors through measurements up to 325 GHz. Next, he’ll provide biasing, sizing and step-by-step design examples for VCO, doubler, switches, PA, large swing optical modulator drivers and quasi-CML circuit topologies and layouts that make efficient use of the back-gate bias to overcome the limitations associated with the low breakdown voltage of 20nm and 12nm FD-SOI CMOS technologies.

Sign Up Now!

With over 100 attendees filling every chair in the auditorium, last year’s training day was sold out. Although it was in Silicon Valley, people actually flew in from all over the world to be there. During the Q&A at the end, most everyone prefaced their questions by saying, “Thank you. I really learned a lot today.”

2018 will be no different – except that it’s sure to sell out even faster. Please note, though, that this is not a free event, so only the attendees will get copies of the slide decks.

Here’s key info you need to sign up. See you there!

What: SOI Consortium’s FD-SOI Training Day

When: 27 April 2018, 7:30am – 5pm.

Where: Crowne Plaza San Jose, Milpitas CA (parking is free)

Registration fee: US $485.00 (includes training book, breakfast, box lunch and refreshments during breaks)

How to sign up: Click here to go directly to the registration site.

RFSOI Short Course – Great Line-Up! (EuroSOI, March 2018)

RF-SOI is in every smart phone out there, and with 5G, there are lots more applications on the horizon. If you’d like to learn more about designing in RF-SOI, there’s a great short course coming up the day before and in conjunction with the EuroSOI-ULIS Conference in Granada, Spain.

The title of this short course is RFSOI: from basics to practical use of wireless technology. Program and registration details can be found here. The course runs for the full day on Sunday, 18 March 2018.

The talks, which are being given by a stellar line-up of experts, include:

  • RF SOI, fabrication, materials and eco-system – Ionut Radu Director of Advanced R&D, Soitec
  • Fundamentals of RF SOI technology – Jean-Pierre Raskin, Professor, UCL
  • 22nm FDSOI Technology optimized for RF/mmWave Applications – David L. Harame, RF CTO Development and Enablement, GlobalFoundries
  • RF SOI technology and components for 5G connectivity – Christine Raynaud, Program Manager (Business Development – Technology to Design), CEA-Leti
  • Analog and RF design on SOI – Barend van Liempd, Senior Researcher, imec
  • Techniques and tricks for RF measurements on SOI – Andrej Rumiantsev, Director RF Technologies, MPI Corporation
  • FOSS TCAD/EDA tools for advanced SOI-device modeling – Wladek Grabinski, R&D CM Manager, MOS-AK
  • RF design flow for SOI – Ian Dennison, Design Systems Senior Group Director, Cadence

The course is being organized by SOI Consortium members Incize and Soitec.

BTW, this year marks the 4th joint EUROSOI – ULIS Conference. The EuroSOI Conference, which has been ongoing for decades, is well paired with the ULtimate Integration on Silicon Conference. The joint conference provides an interactive forum for scientists and engineers working in the field of SOI technology and advanced nanoscale devices. One of the key objectives is to promote collaboration and partnership between different players from academia, research and industry. As such, it covers technical topics, industry trends and updates from pertinent European programs.

EuroSOI-ULIS will take place 19–21 March 2018 at the University of Granada in Spain. For information on the program and how to register, see the website. Following the conference, the papers will be available at the IEEE Xplore® digital library, and the best papers will be published in a special issue of Solid-State Electronics.

 

 

 

Body Biasing: It’s Not an Obligation, It’s an Opportunity. And Other Take-Aways from the FD-SOI Design Tutorial Day.

Over a hundred chip designers packed the room for the SOI Consortium’s recent FD-SOI Design Techniques Tutorial Day. Five professors and scientists from top institutions covered design techniques with real examples in digital, mixed-signal, analog, RF, mmW and ULV memory.

Although it was in Silicon Valley, people actually flew in from all over the world to be there. During the Q&A at the end, most everyone prefaced their questions by saying, “Thank you. I really learned a lot today.”

Many of the questions pertained to body biasing, which prompted STMicroelectronics Fellow and Professor Andreia Cathelin to state what may well have been the take-away of the day. “Body biasing is not an obligation,” she said. “It’s an opportunity.”

Q& A with the professors at the end of the FD-SOI Tutorial day. (Courtesy: SOI Consortium)

The tutorial, sponsored by both Samsung and GlobalFoundries, was hosted by Samsung at their San Jose headquarters.  But as this was a paying event, the presentations are only available to those who attended.  Having had the good fortune to attend, I can give you a quick recap of some of the highlights.

Analog, Mixed-Signal and mmW Design: The Overview

Professor Cathelin set the stage with a basic overview of FD-SOI design for analog, mixed-signal and mmW.

FD-SOI is a perfect match for the many up and coming SOCs that are often half analog and/or RF and mmW.  She explained how FD-SOI makes the analog designer’s life much easier (no small feat, since analog can seem rather like blackbox magic to those on the digital side).  FD-SOI improves: performance (even at high frequencies), noise, short device efficiency and brings in a new very efficient transistor knob through the Vt (threshold voltage) tuning range. She also explained and gave numerous real examples implemented in ST’s 28FDSOI on how:

  • forward body bias (FBB) can be used as a Vt tuning knob, giving the designer a very large Vt tuning range, both for analog/RF and mmW designs;
  • the improved analog performance gives you lower power consumption;
  • transistors can operate with decent design margins at L>Lmin.

For mmW design, the transistor should operate at Lmin, and hence you get excellence performance in terms of both transition frequency (Ft – set by the technology node) and maximum frequency (Fmax – what the designer can really get in the gain vs. speed trade-off). This can be conjugated with the fact that the back-end of line, despite the very fine nm node, takes advantage of the SOI features and brings in very decent quality factors.

For mixed-signal/high-speed design, she showed how and why FD-SOI gives you improved variability, a fantastic switch performance, and reduced parasitic capacitance. All these permit state of the art results in high-speed data converters, or, for example, lower frequency implementations which do not need any specific calibration for best in class linearity and ENOB (effective number of bits).

She also presented details on the CEA-Leti electrical models which are now the reference stand point (Leti-UTSOI2) for any FDSOI technology, and are implemented in several industrial Design Kits such those from ST.

RF, mmW and Broadband Fiber-Optic SOCs

Next on tap was a very lively talk with almost 60 slides by Professor Sorin Voinigescu of U. Toronto.  He focused on how to use the main features of FD-SOI for efficient design of RF, mm-wave and broadband fiber-optic SOCs.  We’re talking high-speed/high-frequency here, and he had real examples of chips fabbed in ST’s 28FDSOI and some simulated in GlobalFoundries’ 22FDX technology.

Last slide from Professor Voinigescu FD-SOI tutorial. (Courtesy: U.Toronto, SOI Consortium)

He examined layout issues and gave measurement tips and tricks, noting that there are a lot of things you can do in FD-SOI that you can’t do in bulk.  It’s also easier to get high linearity in FD-SOI – yet another reason that he really likes it.  Plus he sees it as competitive in terms of scaling even past 7nm.

ULV Memories

Professor Joachim Rodrigues of Lund University in Sweden (the largest university in Scandinavia) talked about Design Strategies for ULV memories in 28nm FD-SOI (ST’s FD-SOI technology). Noting that SRAMs eat a lot of area in an SOC, he first proposed a standard cell-based memory (SCM) in 28nm FD-SOI that cut memory area by 35% and reduced leakage by 70%.

Professor Joachim Rodrigues of Lund University presenting at the 2017 FD-SOI Design Techniques Tutorial Day in Silicon Valley (Courtesy: Lund U., SOI Consortium)

He then talked about other chips he and his team have presented at the world’s top chip conferences, including an ultra-low voltage (ULV) SRAM.  For that chip they lay claim to having the best write performance in ULV in sub-65nm (15MHz at 240mV), and the  best performing read capability across all technologies (30MHz at 240mV). In each case, he explained the fundamental design considerations, concepts and trade-offs.

Berkeley: 10 FD-SOI Chips – and Still Counting!

Professor Borivoje “Bora” Nikolic of UC Berkeley is an expert in body-biasing for digital logic. He and his team have designed ten chips in ST’s 28nm FD-SOI, and they’re now working on their 8th generation of energy-efficient SOCs. During his 90-slide (!) tutorial, Energy-Efficient Processors in 28nm FDSOI, he covered: digital logic (including implementation and adaptive tuning of cores for optimal energy efficiency); SRAM and caches (design scenarios and results compared to bulk); supply (generating, switching and analog assists); back bias (how it’s generated and how to use it). He finished with (60 slides of!) design examples and the results they got for power (including adaptive voltage scaling) and performance. He said to be on the lookout for upcoming publications on (even more!) chips, as well as new work on 22nm designs.

A page from Professor Nikolic’s tutorial on FD-SOI design for digital logic. (Courtesy: UC Berkeley, SOI Consortium)

Pushing the Mixed-signal Envelope

Even if you don’t know anything about mixed-signal design, you can walk away from an hour-long lecture by Professor Boris Murmann of Stanford with a good understanding of what it’s all about. In his talk, Pushing the Envelope in Mixed-Signal Design Using FD-SOI, he explained how a mixed-signal person thinks about FD-SOI, and how the different metrics and sweetspots vary depending on what you’re working on.  From there it was the deep dive, as he got into the heart of his talk: simulated transition frequency vs. gm/lD. He explained that while some things might seem counter intuitive (like long channels are more efficient for very low Ft requirements), it’s all related to electrostatics. It’s not yet well explained in the literature, he said, but it should be a big deal.  And he explained why with FD-SOI, you don’t have to design for the worst case. He then talked about where he sees things going – he sees a very bright future indeed for FD-SOI and analog as computing moves into very low-power neural networks. In the end, he said, it all boils down to the FD-SOI performance benefits with respect to better gate control. This translates into “significant improvements” for many mixed-signal/RF building blocks.

Professor Boris Murmann talks about FD-SOI for mixed-signal. (Courtesy: Stanford, SOI Consortium)

All in all, it was a really terrific day. BTW, this tutorial day followed a full-day FD-SOI Symposium in Silicon Valley. Click here to read about that.

Upcoming SOI/FD-SOI Workshop in Tokyo – Great Line-Up, Registration Still Open

Looking for insight into the state of SOI and FD-SOI in Japan? Want to find out who’s doing IP and design support? Wondering about the major drivers? If you’re in the region, you can find out – and network with the top players in the ecosystem – at the 3rd Annual SOI Tokyo Workshop. The SOI Consortium has put together a great line-up of speakers.

This year it will take place over the course of two days, May 31st and June 1st . Click here for registration information on the SOI Consortium website. (While there is no charge for the event, please register in advance to guarantee your place.)  You’ll find the full program here. A brief summary follows.

(©Tokyo Convention & Visitors Bureau)

Day 1

The first day – Wednesday, May 31st  – is an afternoon session hosted by Silvaco, with presentations from some of the key players in the FD-SOI Ecosystem. Speakers include top executives from GlobalFoundries and IP/design leaders Synopsys, Silvaco, Invecas and Attopsemi, as well as the SOI Consortium.  

It will take place on the 25th floor of the Yokohama Landmark Tower.  The reception at the end of the day will give participants an extended opportunity to network with the speakers and other attendees.

Day 2

The second day of the workshop – Thursday, June 1st – will focus on Convergence of IoT, Automotive Through Connectivity. This full-day workshop, with talks by top executives in the industry, will be held at Tokyo University’s Takeda Hall.  

It kicks off with talks on ultra-low power applications from Sony IoT and Samsung.  Next up, speakers from Imagination/MIPS, IHSMarkit and Leti address automotive technologies. After lunch, the first group of speakers from GlobalFoundries, Cadence, Nokia and ST tackle IoT, Connectivity and Infrastructure.  The day wraps up with talks by some of the key supply chain providers: Applied Materials, Soitec and Screen.

Coffee breaks and lunch will give attendees and speakers time for further discussion.

This is a great opportunity – don’t miss it!

ARM Steps Up! And More Good News From Consortium’s FD-SOI Symposium in Silicon Valley

ARM is stepping up its effort to support the FD-SOI ecosystem. “Yes, we’re back,” confirmed Ron Moore, VP of ARM’s physical design group. This and much more good news came out of the recent FD-SOI Symposium organized in Silicon Valley by the SOI Consortium.

The full-day Symposium played to a packed room, and was followed the next day by a full-day design tutorial. Though it was a Silicon Valley event, people flew in from all over the world to be there. (BTW, these symposia and tutorials will also be offered in Japan in June, and Shanghai in the fall). I’ll cover the Silicon Valley FD-SOI design tutorial (which was excellent, btw) in a separate post.

Most of the presentations are now posted on the SOI Consortium website. Here in this ASN post, I’ll touch on some of the highlights of the day. Then in upcoming posts I’ll cover the presentations from Samsung and GlobalFoundries.

ARM Pitches In

If you’re designing in FD-SOI, we’ll help: that was the key message from ARM’s Ron Moore during the panel discussion at the end of the day. Earlier that morning, he’d given an excellent presentation entitled Low-Power IP: Essential Ingredients for IoT Opportunities.

CAGR for most IoT units is roughly 50%, he said, counting home (1.6B units by 2020), city (1.8B), industrial (0.6B) and automotive (1.1B). Compare that to the 2.8B smart phones – which he sees as a remote control and display device. The key differentiator for IoT is that 90% of the time the chip is idle, so you really don’t want leakage.

FD-SOI, he said, gives you a silicon platform that’s highly controllable, enables ultra-low power devices, and is really good with RF.  ARM’s worked with Samsung’s 28FDS FD-SOI offering comparing libraries on bulk and FDSOI, for example, and came up with some impressive figures (see the picture below).

ARM worked with Samsung to compare libraries on 28nm bulk vs 28nm FD-SOI, and came back with these very impressive results. (Courtesy: ARM, SOI Consortium)

The foundry partners and wafer providers are in place. So now ARM is asking about which subsystems are needed to fuel FD-SOI adoption.  Ron recognizes that the ARM IP portal doesn’t yet have anything posted for FD-SOI, but they know they need to do it. He called on the SOI Consortium to help with IoT reference designs and silicon proof points.

In the Q&A, audience member John Chen (VP of Technology and Foundry Management at NVIDIA) asked about FD-SOI and low-cost manufacturing of IoT chips. Moore replied that we should be integrating functionality and charging a premium for IoT chips – this is not about your 25-cent chip, he quipped.

NXP – New Levels in ULP

Geoff Lees, SVP & GM of NXP’s Microcontroller business gave a terrific talk on their new i.MX 7 and 8 chips on 28nm FD-SOI. (And Rick Merritt gave it great coverage in EETimes – see NXP Shows First FD-SOI Chips.)

NXP’s been sampling the i.MX 7 ULP to customers over the last six months, the i.MX 8QM is ramping, and the i.MX 8QXP, 8Q and 8DX are enroute. Each of these chips is optimized for specific applications using biasing.  A majority of the design of each chip is hard re-use, and the subsystems can be lifted and dropped right into the next chip in the series. Power consumption and leakage are a tiny fraction of what they’d had been in previous generations. Ultra low power (aka ULP)  is heading to new levels, he says.

With FD-SOI, it’s easy to optimize at multiple points: in the chip design phase, in the production phase and in the use phase. They can meet a wide range of use cases, precisely targeting for power usage. FD-SOI makes it a win-win: it’s a very cost effective way to work for NXP, plus their customers today need that broader range of functionality from each chip.

Geoff tipped his hat to contributions made here by Professor Boris Murmann of Stanford, who’s driving mixed signal and RF into new areas, enabling high-performance analog and RF integration. (Folks attending the FD-SOI tutorial the next day had the good fortune to learn directly from Professor Murmann.)

Finally, he cited something recently pointed out by Soitec (they’re the SOI wafer folks) Chief Scientist Bich-Yen Nguyen: if half your chip is analog and/or RF, she’s observed, the future is very bright indeed for FD-SOI.

And Much More

Briefly, here are some more highlights.

Synopsys: John Koeter, VP of the Marketing Solutions group showed slides of what they’ve done in terms of IP for Samsung and GlobalFoundries’ FD-SOI offerings.  But there’s a lot they’ve done with partners he couldn’t show because it’s not public. In terms of tools and flows, it’s all straightforward.

Dreamchip:  Designing their new chip in 22nm FD-SOI was 2.5x less expensive than designing it in FinFET would have been, said COO Jens Benndoorf in his presentation, New Computer Vision Processor Chip Design for Automotive ADAS CNN Applications in 22nm FDSOI.  One application for these chips (which taped out in January) will be “digital mirroring”: replacing sideview mirrors with screens. Why hasn’t this been done before? Because LED flickering really messes with sensor readings – but they’ve mastered that with algorithms. The chip will also be used for 360o top view cameras and pedestrian detection.  They’re using Arteris IP for the onchip networking, and implemented forward body bias (FBB).  The reference platform they created for licensing has generated lots of interest in the automotive supply chain, he said.

Dreamchip is using Arteris IP for their ADAS chip in GF’s 22nm FD-SOI (Courtesy: Dreamchip, SOI Consortium)

Greenwaves:  CEO Loic Lietar talked about the high performance, ultra-low power IoT applications processor they’re porting from bulk to FDSOI with a budget of just three million euros.   The RISC-V chip leverages an open source architecture (which he says customers love) and targets smart city, smart factory, security and safety applications. As such, it needs to wake up very fast using just microwatts of power – a perfect match for body biasing in FD-SOI.

 

Greenwaves expects big power savings in their move to FD-SOI. (Courtesy: Greenwaves, SOI Consortium)

Leti: In her talk about roadmaps, CEO Marie-Noelle Semeria said the main two drivers they’re seeing in the move to FD-SOI are #1: low power (a customer making chips for hearing aids can cut power by 8x using body biasing, for example) and #2: RF (with Ft and Fmax performance that “…will be hard for FinFET to achieve”). Leti knows how to pull in all kinds of boosters, and is finding that RF performance is still excellent at the 10/7nm node. They’ve developed a low-power IoT platform with IP available for licensing. Other recent FD-SOI breakthroughs by Leti include: demonstration of a 5G mmW 60GHz transceiver developed with ST; the first 300mm Qbit, opening the door to quantum computing; a photodiode opening the door to a light-controlled SRAM; and a new 3D memory architecture leveraging their CoolCubeTM that they’re working on with Stanford.

IBS: CEO Handel Jones predicts that there “will be war in the year to come” at the 22nm node, as all the big foundries take aim.  FD-SOI is the best technology for RF, ULP and AMS, and there’s a huge market for it. He also said China made the right decision to support FD-SOI, and will come out ahead in 5G.

The day ended with a lively panel discussion (moderated by yours truly) featuring experts from ARM, GF, Invecas, Soitec, Synopsys, Verisilicon and Sankalp.  IP availability was a big theme, but generally there was agreement that while some gaps still exist, they’re being filled:  lack of IP is no longer an issue. Soitec VP Christophe Maleville confirmed that the wafers for FD-SOI are readily available and that they’re seeing excellent yields.

All in all, it was another really good day for FD-SOI in Silicon Valley.

Must Read! EETimes Covers NXP’s First FD-SOI Chips and FD-SOI Symposium

EETimes Editor Rick Merritt has posted an excellent piece entitled NXP Shows First FD-SOI Chips. He attended the SOI Consortium’s recent FD-SOI Symposium in Silicon Valley, and used the event to score interviews with key executives from NXP, Samsung and GlobalFoundries. The piece has generated a big buzz, having been shared several hundred times on LinkedIn and retweeted extensively on Twitter.

GF: 45nm RF-SOI PDKs for 5G

GlobalFoundries has announced availability of its 45nm RF-SOI technology (read the press release here). Dubbed 45RFSOI, the company says it’s the first 300mm RF solution for next-gen mmWave beamforming applications in future 5G base stations and smart phones.

The technology supports mmWave spectrum operation from 24GHz to 100GHz band, 5x more than 4G operating frequencies.

Skyworks’ CTO Peter Gammel says that the 45RFSOI process, “…is enabling Skyworks to create RF solutions that will revolutionize emerging 5G markets and further advance the deployment of highly integrated RF front-ends for evolving mmWave applications.”

The news was quickly picked up by publications across the industry, with EETimes noting that RFSOI has been a big GF success story.

Production will be at the company’s East Fishkill fab. The PDKs are available now.

The 45RFSOI news follows hard on the heels of GF’s announcement a few days prior that the company is teaming up to build a fab offering 22nm FD-SOI in western China, that it’s expanding its Dresden FD-SOI capability by 40 percent, and that it’s adding new RF-SOI capabilities to its fab in Singapore.

GlobalFoundries is a member of the SOI Industry Consortium.