Tag Archive Japan

SOI Consortium Events Around the World This Fall – Mark Your Calendars

2019 will be a busy fall for the SOI Consortium and our members.

First off are the SOI Consortium events in Shanghai and Tokyo, which are very popular indeed. We now have the dates & locations locked in, so you’ll want to mark your calendars:

The SOI Consortium and members will also be giving talks at Semicon Europa, which is being held 13 – 15 November 2019 in Munich, Germany.

The programs are currently being finalized. As soon as they’re ready, we’ll be sure to let you know so you can register and/or share the news with your colleagues and clients. But in the meantime, make sure you save the dates.

Would you like to check out the presentations given at Consortium events in previous years? If you hover your cursor over the Events tab at the top of our home page, you’ll get a drop-down menu of events for the last five years (we’re working on adding more – we’ve been doing these events for over a decade!). Click through to any past event and you’ll land on a page where you can download most of the presentations that were given there. Of if you’re looking for past presentations given by any particular company, use the search engine at the bottom of any page on our website.

S3S

You’ll also find many of our members at the IEEE/EDS S3S Conference in San Jose, CA, October 14 – 19th. S3S (formerly known as The SOI Conference) has been running in various forms for over 30 years. They always have an excellent line-up of speakers, plus it’s a great opportunity for networking with researchers from across the worldwide SOI ecosystem. BTW, while the deadline for general paper selection has already closed, papers of exceptional merit are currently being accepted for their Late News Sessions. See the 2019 Call for Papers for more information – those Late News papers need to be received by 23 August 2019 for consideration.

Also, IEEE S3S Conference will once again host a full-day short course and a half day tutorial. These are very popular. The short course this year will be on SOI Design and Technology for Analog and Mixed Signal. As of this writing, the program is still being finalized, but more will be announced in the next few weeks, so check back on their website soon for updated information.

Member Events

And finally, don’t forget to learn more about the offerings from and in support of the SOI ecosystem at our members’ events around the globe, including:

GlobalFoundries – GTC | Samsung Foundry – SFF | ST – Technology Tour | Synopsys – SNUG | Cadence – CDNLive | Silvaco – SURGE | Arm – TechCon | NXP – Tech Days | Leti – Events | imec –Events |

Now, We Ramp! Panelists at Japan Workshop See Good Opps for FD-SOI, RF-SOI

Lots of great information came out of the two days of workshops in Japan recently organized by the SOI Consortium. Some of the presentations are now posted on the consortium website (get them here).

The first day (held in Yokohama and sponsored by Silvaco) focused on FD-SOI and RF-SOI design. The second day (held at U. Tokyo) focused on More than Moore (especially silicon photonics, MEMS & sensors), and the SOI manufacturing ecosystem.

The 1st day panel discussion was so interesting we’ll give it a post of its own, then follow up with round-ups of the presentations from both days.

And now to ramp!

The morning panel discussion on end-user deployment for FD and RF-SOI was moderated by SOI Consortium Executive Director Giorgio Cesana. GF’s CTO Subi Kengeri led off saying that that 2017 had been the year of FD-SOI adoption. Samsung Director Adam Lee noted that in the beginning nobody believed it would get traction, but now everybody does, and Samsung is commercializing it: chips coming out this year will ramp in volume in 2019.

Panel on FD-SOI and RF-SOI end-user deployment, SOI Workshop Japan, 2018. Giorgio Cesana, SOI Consortium Executive Director, Moderator; John Carey, ST Director; Adam Lee, Samsung Director; Subramani Kengeri, GF CTO; Wayne Dai, VeriSilicon CEO; Mostafa Emam, Incize CEO. (Courtesy: SOI Consortium)

VeriSilicon CEO Wayne Dai said he sees great potential in IoT, where the volumes are high but fragmented. In IoT, he said, you need RF, but you really only need very high performance about 20% of the time, which is a perfect fit for FD-SOI.

ST Director John Carey noted that ST’s been using FD-SOI since 2014. They’ve fabbed products for cryptocurrency and infrastructure. Now in their second and third generations of designing with it, they’ve got some big FD-SOI chips coming out next year with embedded memory and RF. He sees it being particularly successful in mmWave, automotive and IoT.

The conversation then shifted to RF-SOI. Mostofa Emam, CEO of Incize, explained that since RF-SOI is already in every smart phone, it’s in a different situation from FD-SOI. The emphasis here is now on adding more blocks. “RF is an art,” he said. “It takes an artist. You need talented artists and tools.” One of the biggest challenges for fabs that are newcomers is models – not just at the transistor level, but also at the substrate level. The big players have addressed this, but Incize is working to support more foundries with new, innovative approaches, and helping them develop robust PDKs. The industry needs more good RF designers as well as better RF design flow, he concluded.

Coming back to FD-SOI, Cesana asked about non-volatile memory (NVM). Samsung’s Lee said they’ve already got NVM options including eMRAM for 28nm, and customers are now requesting eMRAM PDKs for the next node (18FDS). ST’s Kengeri added eNVM is important for FD-SOI, especially since flash is not scaling. While there are lots of options, MRAM gives you all the value, and in FD-SOI it only adds three more mask steps, so cost savings are maintained.

With respect to local computing for AI with FD-SOI, everyone agreed on the importance of the edge. In addition to RF, FD-SOI gives you density even at 28nm, explained Carey. You can manually control power with back biasing, so you get something very flexible, especially for NB-IoT applications where the battery will have to last for 10 years. In fact Kengeri sees FD-SOI as enabling fog/edge computing.

5G – What’s First?

The next question was about 5G: which applications would we be seeing first, and how does FD-SOI help? Lee said Samsung’s seeing it for apps up to 10GHz as well as mmWave. Customers are telling them they want FD-SOI for technical reasons.

Kengeri expanded on that point, saying it comes down to fundamental physics: gate resistance, capacitance, mismatch. FD-SOI has lower Vmin and better Fmax compared to FinFETs, and that’s what tier-one players want.

Carey brought it back to RF-SOI (noting that ST’s introducing a 45nm version), which supports a large number of elements and increased complexity with smaller power budgets. Emam then asked the foundry guys about mmWave. Substrates won’t be the bottleneck he said, so what’s the FD-SOI/mmWave roadmap? Kengeri responded that GF’s ready. Lee said Samsung is also ready, and you’d see it next year on handsets. Samsung has engaged with customers on 30GHz for the middle of next year, he added: it’s qualified. Carey said ST sees it first in consumer premises equipment that’s connected by satellite.

The right enabler

Cesana then asked about image sensor processors (ISPs), noting that analyst Handel Jones has said this is a big opportunity for FD-SOI. You can do 3D integration with sensors, but heat makes noise, so you need technology that decreases heat production and doesn’t give you hotspots (which would be visible in the image). Kengeri pointed to challenges in power density, thermal envelopes and the RTS (random telegraph noise signal). Although there are a lot of options, FD-SOI plays well for thermals and noise, so GF sees a good opportunity here. Dai added that the industry needs volume applications for FD-SOI, and ISPs need to bring more logic closer to the camera. And he concurred that you need FD-SOI for the thermals: it’s very important.

In closing, Dai noted that as a design house, “We walk on two legs: FinFETs and FD-SOI.” 28, 22, 18 and 12nm FD-SOI all enable differentiation. In particular, you need something between 20nm and 7nm: FD-SOI is here. Asked about Japan in particular, Dai said beyond automotive he saw lots of potential in ULP for AVR. Kengeri added that for any applications besides performance-at-any-cost, FD-SOI is the right enabler.

TowerJazz Ramps 300mm 65nm RF-SOI, extends long-term partnership with Soitec

Specialty foundry TowerJazz is ramping a 65nm version of its RF-SOI process on 300mm wafers at Fab 7 in Uozu, Japan. To support the ramp, the company has signed a contract with long-term partner, Soitec, guaranteeing a supply of tens of thousands of 300mm SOI silicon wafers, securing wafer prices for the next years and ensuring supply to its customers, despite a tight SOI wafer market.

The 300mm 65nm RF-SOI process will be offered at the Uozu, Japan fab, which is operated by the TowerJazz Panasonic Semiconductor Company (TPSCo). (Photo courtesy: TowerJazz)

Five of TJ’s seven fabs do RF-SOI. LNA (low-noise amplifers) are a big market driver, and with RF-SOI they can integrate the LNA with the switch, CEO Russell Ellwanter said in his lead keynote at the SOI Consortium’s 5th International RF-SOI Workshop in Shanghai (spring, 2018). BTW, that was in fact a very inspirational talk about Value Creation, and the importance of treating your suppliers with respect. He credited his company’s close relationship with RF-SOI wafer-supplier Soitec for TJ’s claim to the world’s best linearity.

“We are delighted to see the strong adoption of 300mm RF SOI through this large capacity and supply agreement with TowerJazz to augment our already significant 200mm RF-SOI partnership,” said Soitec CEO Paul Boudre. “TowerJazz was the first foundry to ramp our RFeSI products to high volume production in 200mm and continues as one of the industry leaders in innovation in this exciting RF market with advanced and differentiated offerings.”

According to the TJ press release (you can read it here), with its best in class metrics the TowerJazz 65nm RF-SOI process enables the combination of low insertion loss and high power handling RF switches with options for high-performance low-noise amplifiers as well as digital integration. The process can reduce losses in an RF switch improving battery life and boosting data rates in handsets and IoT terminals.

It’s a high-growth market, to be sure. Market researchers Mobile Experts predict that the mobile RF front-end market will reach $22 billion in 2022 from an estimated $16 billion in 2018. TowerJazz says its breakthrough RF SOI technology continues to support this high-growth market and is well-poised to take advantage of next-generation 5G standards, which will boost data rates and provide further content growth opportunities in the coming years.

Customers are already getting into position. For example, Maxscend (WuXi, China), a provider of RF components and IoT integrated circuits, is ramping in this new technology. “We chose TowerJazz for its advanced technology capabilities and its ability to deliver in high volume while continuously innovating with a strong roadmap. We specifically selected its 300mm 65nm RF SOI platform for our next-generation product line due to its superior performance, enabling low insertion loss and high power handling,” said Maxscend CEO Zhihan Xu.

As longtime ASN readers will know, we’ve been covering the evolutions of TJ’s RF-SOI platforms since the beginning of the decade. It’s worth noting, too, that beyond RF, TowerJazz also offers foundry customers other SOI-based processes, such as the new 0.18μm BCD SOI, a 200V SOI technology platform (announced in 2017, press release here) for motor drivers, industrial tools, electric vehicles and more. The previous generation 0.18μm SOI for automotive power management also offers exceptional area savings and is well-suited for high temperature operation. Back in 2014, here at ASN we did a great interview with TJ SVP Dr. Marco Racanelli about when and why they use SOI – and while processes have advanced, the basic drivers are still there, so it’s a still a good read.

And finally, designers will want to know that the TJ Multi-Project Wafer (MPW) Shuttle Program offers the 65nm RF-SOI process, as well as other SOI-based processes. See the website for scheduling and details.

We’re Doing It! FD-SOI Ecosystem Shines in Tokyo (Day 1)

The FD-SOI ecosystem is strong. This was made clear at the recent Tokyo SOI Workshop, organized by the SOI Consortium. The event was spread out over two days, and most of the presentations are now posted (click here to access them).   To cover the full scope of the workshop will take (at least) a couple ASN posts. So let’s start with Day 1, which was billed as the “FD-SOI Ecosystem” day.

A full house for the 3rd Annual Tokyo SOI Workshop, Day 1, FD-SOI Ecosystem(Courtesy: SOI Consortium)

It kicked off with a full-house for an afternoon session in the Yokohama Landmark Tower hosted by Silvaco, with presentations from some of the key players in the FD-SOI Ecosystem.

Silvaco:  FD-SOI EDA Pioneer

David Sutton, CEO of EDA provider Silvaco opened the session with his talk, TCAD, EDA & IP to Support FD-SOI. Silvaco has deep FD-SOI roots, having supported Lapis Semi (formerly Oki) in its first forays into the technology – and that was back in 2002! The company is on a growth run this year, having acquired four companies, including IPextreme.

FD-SOI, he said, has been shown to be cost-effective. The capacity is in place, and it’s getting design wins. Silvaco’s full suite of EDA and custom CAD tools for FD-SOI cover the complete design flow from TCAD to sign-off. Their IP is very strong, he said, especially in automotive (including CAN IP), and their partnerships with key players like IBM and NXP are long running. In fact, Silvaco commercializes IP from NXP and others.

GF: FD-SOI Primetime

We got some great insights from Gregg Bartlett, GlobalFoundries’ SVP of the CMOS Business Unit, in his presentation FDX (FDSOI) Goes Mainstream –  Roadmap for Product Competitiveness (it’s posted – click here to download it). “It is primetime for FD-SOI,” he said, and since one technology does not fit all, they’re redefining the mainstream.  GF’s first FD-SOI offering, 22FDX, was qualified in March, and 12FDX will be taping out in the second half of 2018. They’ve currently got over 80 active engagements.

(Courtesy: GlobalFoundries, SOI Consortium)

FD-SOI will be strong in China, he said. GF and the Chengdu municipality recently announced they are investing more than $100 million to build a world-class FD-SOI ecosystem including multiple design centers in Chengdu and university programs across China. This will lower the barriers to entry and increase IP availability even further, he said. They’re looking to put 500 design engineers in place. Customer tape-outs of 22FDX will begin at the new fab there in 2H2018, with volume production expected to start in 2019.

He went on to drill down on FDX applications, focusing on four main areas:

  • mobility: application processors that need high performance, RF integration and significant power reduction

  • IoT: this was the target when FDX was first conceived, and it continues to be a point of significant investment by the company

  • RF and mmWave: for BLE (Bluetooth Low Energy), WiFi, ZigBee and integrated PA’s (aka power amplifiers – where they’re seeing some impressive numbers, he said)

  • automotive: Grade 2 is done, and Grade 1 is underway (these are industry ratings related to reliability at the high-temperatures you get under the hood and in hotspots in the passenger compartment).

Citing a slide of customer testimonials, he concluded that the ecosystem is really starting to work, adding that they’ve got the right technology for the right applications, and it’s the right path for them to be on.

Invecas IP & Services

Invecas has been working on 22FDX since 2015 through a strategic partnership with GF. They’ve optimized IP and offer ASIC services, explained Bhaskar Kolla, the company’s Sr. Director of BizDev & Customer Engineering. His presentation, Invecas IP Portfolio in 22FDX is posted – click here to get it. It’s full of detail (standard cells, memories, analog & IO, and interface), so you’ll really want to check it out. The IPs are silicon proven and validated; the results are available, he said.

The foundation IPs are sponsored by GF, so they’re free to customers and cover a broad array of calibrations. They include forward and reverse body biasing (FBB and RBB) and body bias generator IP. Customers are really taking advantage of this, he said, citing as an example one that’s going for 2.5GHz by leveraging FBB.

Custom IP for analog & IO is a place they’re seeing a lot of interest, he continued, and on which they’re doing more and more work with clients. And their Interface IP is in a lot of silicon, especially for customers that are area sensitive. In fact, they’ve developed their own Interface IP demo platform in-house, from build through test and compliance checks.

In moving to FD-SOI, customers are seeing significant PPA improvements, he said. In one of the customer use cases for a high-level IoT product he cited, the customer requirements were easily achieved: cutting leakage in half, dynamic power consumption by roughly a third and area by 20%.

Leti: boosting at 10nm

There’s so much technical detail on performance boosters in Laurent Grenouillet’s presentation, FD-SOI: a Low Power, High Performance Technology Scalable Down to 10nm, you really just have to look at it yourself – click here to get it. A CMOS & Memory Integration Expert at Leti, he did a quick review of 28-22-14nm, then took a deep dive into the myriad of performance boosting options for 10nm, including impressive benchmarking regarding the effectiveness of mobility boosters on FD-SOI vs. FinFET.

Here are the boosters he detailed for 28-22-14nm:

(Courtesy: CEA-Leti, SOI Consortium)

Interestingly he noted that with each node, the thickness of the insulating BOX layer of the SOI wafer scales down, and as it does, back bias efficiency improves even more.

Here’s what he then covered for 10nm (and detailed with data packed in the 20 slides that followed):

(Courtesy: CEA-Leti, SOI Consortium)

FD-SOI is the sweet spot when you need lower power, lower cost, more sensing (analog), more comm (RF), more flexibility and more energy efficiency, he concluded – and he provided powerful data to back that up.

Attopsemi’s non-breaking fuse

I-fuseTM: the best OTP of Choice for FD-SOI and sub-14nm nodes was the topic of a talk by Attopsemi Technology’s Chairman, Shine Chung (you can get the ppt here). The company recently joined GF’s FDXcelerator partner program. OTP stands for one-time programmable memory, and I-fuse is different from other OTP technologies (notably NVM and e-fuses), he explained, in that it’s a non-breaking fuse with ultra-high reliability even in high-temp conditions. It’s been qualified by companies worldwide and is in volume production.

He’s a big fan of FD-SOI because it offers the best RF integration, small form factor, ULP and low cost. Want to make a cellphone as small as a watch? Then you need FD-SOI, he quipped with a tip of the hat to a Dick Tracy image. The fact that FD-SOI has a lower junction breakdown than bulk makes I-fuse the best choice for it, he said. You just program a gate as a fuse.

Get it out the door, fast!

During breaks (on both days!), everybody was talking about the terrific Product Design Methodology presentation by Christophe Tretz, the SOI Consortium’s design guru (and longtime IBM guy). In fact, Christophe has agreed to write it up for ASN in the weeks to come, so don’t miss that. You’ll want to look at the whole presentation — click here to get it.  In the meantime, here are some highlights.

(Courtesy: SOI Consortium)

He suggests designers consider an incremental approach in which FD-SOI benefits accrue. “No, you don’t have to know everything about the technology to use it,” he began (especially addressing those in smaller design teams and houses). “The ecosystem is there. Everything you need to use it is there.”

He used a number of cases to explain.

  • Case 1: a simple, digital SOC – you get significant power savings just by reusing existing library blocks and doing minor recompile.

  • Case 2: RF/mixed-signal – turnaround time is very fast (Analog Bits, for example cut leakage by 5x in a port that took just three months). FD-SOI gives analog designers a great new thing to play with for big power savings – and they learn fast.

  • Case 3 (= Cases 1 + 2): “complex” SOC with RF blocks – rework the RF blocks, but reuse library elements for the digital part without a lot of design effort. You get significant power savings very easily.

  • Case 4: a more complex SOC – in this case, you optimize or customize a few blocks in the first design pass, but then optimize/customize more blocks in subsequent design passes. It just keeps getting better and better.

  • Case X: a fully optimized SOC. This takes more time, but you can do parts in parallel and get dramatic results – especially if you use body biasing.

He then looked at the state of the ecosystem:

  • three fabs are ready

  • we have the tools (Synopsys, Cadence, Silvaco)

  • the libraries are there and ready to use

“You don’t have to learn everything to get your product out the door,” he concluded. “You don’t have to do it all at once: you can do it incrementally. Within a few months, you’ll have a nice product, and as you do new products every six months, each time you can re-use, but also tune for more improvements.”

In short: just do it!

So that’s a recap of Day 1. Next post (or posts?) I’ll recap Day 2. Stay tuned!

Upcoming SOI/FD-SOI Workshop in Tokyo – Great Line-Up, Registration Still Open

Looking for insight into the state of SOI and FD-SOI in Japan? Want to find out who’s doing IP and design support? Wondering about the major drivers? If you’re in the region, you can find out – and network with the top players in the ecosystem – at the 3rd Annual SOI Tokyo Workshop. The SOI Consortium has put together a great line-up of speakers.

This year it will take place over the course of two days, May 31st and June 1st . Click here for registration information on the SOI Consortium website. (While there is no charge for the event, please register in advance to guarantee your place.)  You’ll find the full program here. A brief summary follows.

(©Tokyo Convention & Visitors Bureau)

Day 1

The first day – Wednesday, May 31st  – is an afternoon session hosted by Silvaco, with presentations from some of the key players in the FD-SOI Ecosystem. Speakers include top executives from GlobalFoundries and IP/design leaders Synopsys, Silvaco, Invecas and Attopsemi, as well as the SOI Consortium.  

It will take place on the 25th floor of the Yokohama Landmark Tower.  The reception at the end of the day will give participants an extended opportunity to network with the speakers and other attendees.

Day 2

The second day of the workshop – Thursday, June 1st – will focus on Convergence of IoT, Automotive Through Connectivity. This full-day workshop, with talks by top executives in the industry, will be held at Tokyo University’s Takeda Hall.  

It kicks off with talks on ultra-low power applications from Sony IoT and Samsung.  Next up, speakers from Imagination/MIPS, IHSMarkit and Leti address automotive technologies. After lunch, the first group of speakers from GlobalFoundries, Cadence, Nokia and ST tackle IoT, Connectivity and Infrastructure.  The day wraps up with talks by some of the key supply chain providers: Applied Materials, Soitec and Screen.

Coffee breaks and lunch will give attendees and speakers time for further discussion.

This is a great opportunity – don’t miss it!

2015 – Turning the Tables for FD-SOI, RF-SOI and More

If current momentum is any indication, 2015 will be the year the tables turn in favor of FD-SOI designs (with a big shout-out to IoT).  The RF-SOI juggernaut will continue cutting an enormous swath through the mobile market.   Attention to the exciting possibilities of monolithic 3D (M3D) technology (like Leti’s “CoolCube”) will continue to grow, and SOI-based power apps will continue their strong drive into automotive and other markets. More exciting apps in MEMS, NEMS, photonics and sensors will come over the horizon. Players in China will join the upper echelons of SOI-based design and manufacturing. And you’ll read about it all here in ASN.

Riding on the success of the Shanghai RF-SOI and FD-SOI workshops last fall, 2015’s getting off to a great start with free FD-SOI/RF-SOI workshops in Tokyo (23 January, just after ASP-DAC) and San Francisco (27 February just after ISSCC – click here to register).

FDSOI_SF_logo

As of this writing, we just got the news that registrations for the Tokyo workshop had far exceeded expectations. There’s lots of excitement surrounding the prospect of the Sony presentation on their FD-SOI design experience, which we hear will be excellent.  Samsung is slotted for a full half-hour presentation on their FD-SOI offering.  There’ll be press coverage, and here at ASN we’ll be sure to bring you the full wrap-up.

ST and partners Leti, Soitec and IBM have long been leading the FD-SOI charge.  At IEDM ’14 last month, they showed us how the roadmap extends to 10nm. (If you missed that, click here to read about it.) Now we’re looking forward to hearing about those 28nm FD-SOI chips hitting the markets this year.

And with Samsung on board now for ST’s FD-SOI process, things are looking ever more interesting. Earlier this month, Samsung’s Kelvin Low (Senior Director, Foundry Marketing) noted in his blog that, “28FDSOI comes with a complete design ecosystem” (PDK, Library, IP, and DFM – click here to read about it). “Customers who are looking to manufacture faster, cooler, and simpler devices at 28nm should look no further – 28FDSOI is the ideal choice,” he concluded.

Kelvin will also be presenting in the who’s who line-up at the prestigious Electronic Design Process Symposium (aka EDPS, coming up at Monterey Beach, CA in April – click here for more info.) In fact, the lead session of this year’s EDPS is entitled “FinFET vs. FDSOI – Which is the Right One for Your Design?” We look forward to some lively discussions there!

We heard a lot of promising developments at the Semicon Europa Low-Power Conference in the fall (if you missed that ASN coverage, click here to read it).  Although they’ve been quiet in the press, at the conference it was clear that GloFo foundry guys are chomping at the bit.  To recap, Manfred Horstmann, Director of Products & Integration for GlobalFoundries in Dresden said that FD-SOI would be their focus for the next few years. They’re also calling it ET-SOI (for extremely thin), and he said it’s the right solution for SOCs, especially with back biasing. Plus, it’s good for the fab because they can leverage their existing tool park. Asked if they have customers lined up, he said yes – so we’ll look forward to hearing about them this year.

And finally, this April we’ll be celebrating the 10th anniversary of ASN. It’s hard to believe 10 years have sped by since we published our first edition. Thank you for your continued support.

With best wishes for a safe, happy, healthy and prosperous 2015.