Tag Archive power

TowerJazz Ramps 300mm 65nm RF-SOI, extends long-term partnership with Soitec

Specialty foundry TowerJazz is ramping a 65nm version of its RF-SOI process on 300mm wafers at Fab 7 in Uozu, Japan. To support the ramp, the company has signed a contract with long-term partner, Soitec, guaranteeing a supply of tens of thousands of 300mm SOI silicon wafers, securing wafer prices for the next years and ensuring supply to its customers, despite a tight SOI wafer market.

The 300mm 65nm RF-SOI process will be offered at the Uozu, Japan fab, which is operated by the TowerJazz Panasonic Semiconductor Company (TPSCo). (Photo courtesy: TowerJazz)

Five of TJ’s seven fabs do RF-SOI. LNA (low-noise amplifers) are a big market driver, and with RF-SOI they can integrate the LNA with the switch, CEO Russell Ellwanter said in his lead keynote at the SOI Consortium’s 5th International RF-SOI Workshop in Shanghai (spring, 2018). BTW, that was in fact a very inspirational talk about Value Creation, and the importance of treating your suppliers with respect. He credited his company’s close relationship with RF-SOI wafer-supplier Soitec for TJ’s claim to the world’s best linearity.

“We are delighted to see the strong adoption of 300mm RF SOI through this large capacity and supply agreement with TowerJazz to augment our already significant 200mm RF-SOI partnership,” said Soitec CEO Paul Boudre. “TowerJazz was the first foundry to ramp our RFeSI products to high volume production in 200mm and continues as one of the industry leaders in innovation in this exciting RF market with advanced and differentiated offerings.”

According to the TJ press release (you can read it here), with its best in class metrics the TowerJazz 65nm RF-SOI process enables the combination of low insertion loss and high power handling RF switches with options for high-performance low-noise amplifiers as well as digital integration. The process can reduce losses in an RF switch improving battery life and boosting data rates in handsets and IoT terminals.

It’s a high-growth market, to be sure. Market researchers Mobile Experts predict that the mobile RF front-end market will reach $22 billion in 2022 from an estimated $16 billion in 2018. TowerJazz says its breakthrough RF SOI technology continues to support this high-growth market and is well-poised to take advantage of next-generation 5G standards, which will boost data rates and provide further content growth opportunities in the coming years.

Customers are already getting into position. For example, Maxscend (WuXi, China), a provider of RF components and IoT integrated circuits, is ramping in this new technology. “We chose TowerJazz for its advanced technology capabilities and its ability to deliver in high volume while continuously innovating with a strong roadmap. We specifically selected its 300mm 65nm RF SOI platform for our next-generation product line due to its superior performance, enabling low insertion loss and high power handling,” said Maxscend CEO Zhihan Xu.

As longtime ASN readers will know, we’ve been covering the evolutions of TJ’s RF-SOI platforms since the beginning of the decade. It’s worth noting, too, that beyond RF, TowerJazz also offers foundry customers other SOI-based processes, such as the new 0.18μm BCD SOI, a 200V SOI technology platform (announced in 2017, press release here) for motor drivers, industrial tools, electric vehicles and more. The previous generation 0.18μm SOI for automotive power management also offers exceptional area savings and is well-suited for high temperature operation. Back in 2014, here at ASN we did a great interview with TJ SVP Dr. Marco Racanelli about when and why they use SOI – and while processes have advanced, the basic drivers are still there, so it’s a still a good read.

And finally, designers will want to know that the TJ Multi-Project Wafer (MPW) Shuttle Program offers the 65nm RF-SOI process, as well as other SOI-based processes. See the website for scheduling and details.

SOI Consortium Welcomes ASN News

Changes are afoot on the SOI Consortium website. You’ve seen our great new look. Now we have also brought Advanced Substrate News (known to most as ASN) into our fold.

ASN has been bringing you SOI-related news for over a decade now. Editor-in-Chief Adele Hars will continue leading the charge, working closely with the Consortium’s expanding membership base to bring you key news and fresh perspectives from our industry.

The SOI ecosystem is kicking off a banner year in 2017. For example, we just got the news (read more here) that Consortium member GF is teaming up with Chengdu municipality in China on a new fab offering 22FDX, GF’s 22nm FD-SOI process technology. GF is also expanding Dresden’s capacity by 40 percent and augmenting their Singapore fab’s RF-SOI.

That’s just the tip of the iceberg. Watch these pages for more news from our members and the greater ecosystem (if you’re not yet signed up for our email alerts, please take a moment to fill in the form here). In addition to FD-SOI and RF-SOI, we’ll be further expanding our coverage of other fields leveraging SOI such as MEMS, photonics, power and more.

The Consortium will of course continue offering our extremely successful workshops and training sessions (April in Silicon Valley, June in Tokyo, September in Shanghai plus events in Europe TBA). If you can’t get there yourself, don’t worry. ASN will bring you up-close coverage of these events.

And finally, 2017 marks the 10th anniversary of the founding of the SOI Industry Consortium. We thank you all for your decade of support, and welcome your participation. (If your company is not yet a member, click here to learn more about how to join.)  

The SOI ecosystem is more dynamic than ever. Of course we still have plenty of work to do, and we look forward to sharing Consortium and ecosystem successes (and challenges!) with you here at ASN’s new home. We’d love to hear from you – and if you have an idea for a contributed article, please drop Adele an email.

Many thanks. Here’s to the beginning of a dynamic new partnership between the SOI Industry Consortium and ASN.

With best regards,

Carlos Mazure and Giorgio Cesana

Executive Directors

SOI Industry Consortium

 

First SOI wafers based on Smart Cut tech produced in China, target strong 200mm SOI demand in smart power, RF, automotive

Shanghai-based Simgui has produced the company’s first 200mm SOI wafers based on Soitec‘s Smart CutTM manufacturing technology (read the press release here). Samples will be going to customers in the coming weeks for qualification, with high-volume ramp planned for early 2016. Simgui will be selling the wafers directly to its own customers in China, and manufacturing on an OEM basis for Soitec customers worldwide. This includes manufacturing Soitec’s fabulously successful RFeSI90 substrates for LTE-A, 5G and Gigabit Wi-Fi in smartphones and other devices (read about those here), substantially increasing worldwide capacity to meet the recent rapid rise in demand.

1stSmartCutSimgui3

Simgui’s first 200mm SOI wafer manufactured using Soitec’s Smart Cut technology. (Courtesy: Simgui)

While overall worldwide 200mm wafer demand (including bulk and epi) has slipped a bit over the last year (they’re now accounting for a little over a quarter of all wafer sales), demand is increasing for certain types of 200mm SOI wafers. What’s driving it? RF and smart power (both of which are seeing big opps in automotive). SOI wafer leader Soitec, for example, is seeing an uptick of 20% in 200mm SOI wafers for smart power for automotive. RF is growing even faster.

The thick and thin of it

What’s different about these 200mm SOI wafers? It’s a question of layer thickness, quality and the manufacturing technology used to make them. Simgui and many others have been producing very “thick” 200mm SOI wafers for years. Traditionally in “thick” SOI (which has been used in things like power, aerospace, automotive, MEMS and sensors for decades), the top silicon might be up to anywhere from 2 µm to 300 µm thick, with an insulating box layer in the range of 3 µm (sometimes much more). But new apps in smart power and RF, for example, need a very high quality top silicon layer that might be as thin as 0.145µm for power*, or under 0.1µm for RF. The insulating layer also needs to be far thinner, and the bottom supporting layer also has to fulfill specific, advanced parameters.

(Bear in mind that these wafers for RF and smart power are still relatively thick compared to what you need for FD-SOI, for example, which is considered “ultra-thin”, and has ultra-uniform top silicon with a thickness in the range of 10-20 nm (0.01 – 0.02µm).)

SOI_thickness_by_appV8

This graphic explains which SOI wafers are used for which applications, correlating top silicon and insulating buried oxide layer thicknesses.

There are several different manufacturing approaches to fabricating SOI wafers. To make the SOI wafers needed for new markets in smart power and RF, Simgui has opted to use Soitec’s Smart Cut technology (which is well-explained here). Smart Cut’s especially good for producing very high-quality wafers, with a thin and very uniform top layer of silicon and a thin layer of insulating buried oxide (BOx).

The new deal

Simgui is a high-tech company in Shanghai focused on supplying SOI wafers and providing foundry services for epi wafers. It was spun off from the Shanghai Institute of Microsystem and Information Technology (SIMIT) within the Chinese Academy of Sciences (CAS) and now is a joint venture with a group of investors from Silicon Valley. Both its SOI and epi businesses are growing dramatically.

With a surge in demand for leading-edge thick 200mm SOI wafers, Simgui partnered with Soitec, the industry’s SOI wafer leader, back in May 2014 (see that press release here).

SimguiFab3

Simgui’s Fab-3 in Shanghai, where the company is manufacturing 200mm SOI wafers for power & RF using Soitec’s Smart Cut technology.

The May 2014 deal was a licensing and technology transfer agreement under which Simgui would manufacture Soitec’s 200-mm SOI wafers using Soitec’s proprietary Smart Cut™ technology. The news now is that it’s actually happened. Simgui has established a high-volume SOI manufacturing line to directly supply the Chinese market. In addition, Simgui will manufacture Soitec’s 200 mm SOI wafers for the global market outside China, expanding Soitec’s supply to customers worldwide in the growing RF and power markets. Beyond this initial cooperation, the two companies are expanding their collaborative efforts in the future to take advantage of their synergies.

China markets and beyond

Roughly a third of the fabs in China are 200mm (see SEMI’s map below). As recently noted by IC Insights, “Fabs running 200mm wafers will continue to be profitable for many more years and be used to fabricate numerous types of ICs, such as specialty memories, image sensors, display drivers, microcontrollers, analog products, and MEMS-based devices.”

ChinaMapSEMI2015

Current map of fabs by wafer diameter in China (as of April, 2015, Courtesy: SEMI)

The Soitec-Simgui partnership addresses two key areas: 1. China’s growing demand and 2. the need for an increase in worldwide production capacity for 200-mm SOI wafers used in fabricating semiconductors for RF and power applications. It’s also seen as a key element in establishing an SOI ecosystem in China.

Dr. Xi Wang, chairman of the board of directors of Simgui, notes that, “China is a hot spot for the IC industry today. The fast growth of China’s mobile devices demands a large number of SOI wafers. Through the collaboration with Soitec, Simgui has successfully demonstrated a strong technical ability and expanded capacity to meet our customers’ needs. In addition to the planned high-volume manufacturing of SOI wafers, we will continue to promote the SOI ecosystem in China and build a globally influential Chinese silicon industry.”

It’s also good news for Soitec’s 200mm SOI customers. “We are very pleased to have reached this major milestone with Simgui, which now has the capability to manufacture Soitec’s SOI products using our Smart Cut technology. This represents a key step in our commitment to increase capacity in response to the needs of our customers who serve the fast-growing RF and power markets, both in China and worldwide,” said Paul Boudre, CEO and chairman of the board of Soitec.

Which explains why the two companies see it as a win-win situation.

Shanghai More-Than-Moore Presentations Now Posted on SOI Consortium Website

Presentations given at the ‘Beyond Computing’ Innovative Technologies Symposium (March 2015 in Shanghai) are now available on the SOI Consortium website (click here to see the list). The Symposium covered MEMS, semiconductor manufacturing, RF and power, which are key topics for the fast growing “More than Moore” industry. The one-day, closed-door symposium was organized by members of the SOI Consortium and the Shanghai Industrial μTechnology Research Institute (SITRI) to facilitate exchanges with industry leaders in China.

Huge Success of Semicon China: Opportunities in a Fast-Changing Landscape

SemiconBannerlores

Semicon China (Shanghai, 17-21 March 2015) was an awe-inspiring event.   The sheer size and the energy were dazzling. But it was the investment plans prompted by the government’s injection of RMB 120 billion (US$19.6 billion) last fall in seed money for the industry with supporting local funds pouring in that was clearly the source of a lot of adrenalin and M&A talk.

 

China’s industry is in high gear, still posting double-digit growth. But here’s the rub: while China consumes about half of the world’s roughly US$ $350 billion in chips (2015, WSTS), fabs in China only account for 2.5% of worldwide revenue. They’d like to see that change in a big way, and fast.

 

XMC slide shown during Semicon China 2015 show the challenges facing fabs in China.

XMC slide shown during Semicon China 2015 show the challenges facing fabs in China.

Hence Beijing’s IC Investment Fund, which is expected to continue to be expanded. SEMI estimates that the total government (central plus local) funds will reach US$100 billion, plus it’s prompting the creation and growth of additional local government and industry funds. (Dr. Adam He at SEMI has done an excellent job explaining Beijing’s investment strategy – you can see his summary here.) New VC funds are popping up everywhere, and existing ones are being augmented.

 

Which is why everybody was calling it the best time the industry’s ever seen. In his talk, Handel Jones of IBS, called it a once-in-a-lifetime opportunity.

 

This should represent significant opportunities for the SOI ecosystem in China. China foundries are offering RF-SOI already (click here to read about the Shanghai RF-SOI Workshop). And it is worth noting that China’s R&D institutes have deep expertise in all things SOI.

 

FD-SOI is an important topic (click here to see an ASN piece on FD-SOI by a professor at a top Beijing institute from last year, and here for more about the recent Shanghai FD-SOI workshop). China’s designers are hot on FD-SOI, too. (Did you hear about how the Beijing cryptocurrency mining hardware company SFARDS is preparing to release its debut miner, which is built on a 28nm FD-SOI ASIC, by April 2015? Read about it here.)

 

SOI-based MEMS, power, and sensors products are also already produced in China’s foundries. In fact SOI was a strategic focus by key institutes like SIMIT under the national “Innovation 2020” 5-year plan launched in 2010.

 

In terms of SOI wafers, China’s wafer leader, Simgui also works closely with Soitec, the world’s SOI wafer leader. Not surprisingly, theirs was a busy stand at Semicon China.

 

Simgui, China’s SOI wafer leader, had a busy stand at Semicon China 2015.

Simgui, China’s SOI wafer leader, had a busy stand at Semicon China 2015.

 

The Hot Topic: M&A

 

During the keynotes and industry sessions, M&A were central themes, as China looks beyond its borders for expertise. Hardly a talk went by that didn’t touch on this topic, all emphasizing that 1 + 1 > 2, and hammering home the importance of holding on to top talent in takeover scenarios. With each new slide, a sea of smartphones raised above the crowd to capture the onscreen tips.

 

It was standing-room-only at the Semicon China 2015 Tech Investment Forum.

It was standing-room-only at the Semicon China 2015 Tech Investment Forum.

 

In fact, with the IC Investment Fund taking center stage, the head of China Merger & Acquisition at Goldman Sachs gave the audience a primer on the M&A process. China, he noted, is now number two for M&A worldwide, just behind the US. While in the past the activity was “inbound”, China’s companies are now active on a transnational scale. This year will be an M&A record breaker for the semiconductor industry in China.

 

China’s expats are returning in droves from abroad, founding new companies. New industrial parks like the one out by the Shanghai airport are attracting major investors.

 

 

 

Big Show, Small World

 

This was the biggest Semicon ever, with 2750 booths covering 57,000m2 (over 600,000 sq. ft – more than three times the size of West) and over 50,000 visitors (almost twice what they got at West+Intersolar last year).

 

But Semicon China also had its small-world moments that show just how far SOI is reaching. Consider this. I was on the metro in Shanghai, heading over to Semicon, reading the show program. The guy next to me asked a question about the show (he was heading there, too), and we got to chatting.

 

It turns out he’s the founder of Trinamic, a German company that designs chips for motion control. They have just started an SOI project with X-fab as the foundry. He’s very clear and enthusiastic about what he expects SOI to do for them. It’s for a high-volume app in small, precision motor control for things like video surveillance cameras.

 

This is an encouraging indication of just how far the SOI ecosystem is reaching! (We have an interview coming up with the folks at X-fab, btw, so keep an eye out for that.)

 

We’ll also have lots more from China, including interviews and profiles of the institutes and companies that are major players in the SOI ecosystem there. It’s truly an incredible place to be right now.

 

NXP Adds to Line of SOI-based GreenChip Power Supply Controller ICs

GreenChip_byNXP_identifier_cmykNXP recently expanded its GreenChip line of SOI-based power supply controller ICs with the new TEA1832TS (click here for more product info). Here at ASN, we first covered this line back in 2011 (see that Buzz here), and NXP’s been adding to it ever since.

Smart, green power supplies are one of the most important ways that designers reduce the power consumption of modern electronics. The reason NXP has been using SOI for over 15 years is well explained in this ASN piece from 2009 – read it here.

The TEA1832TS is a low-cost Switched Mode Power Supply (SMPS) controller IC intended for flyback topologies. It makes the design of low-cost, highly efficient and reliable supplies easier by requiring a minimum number of external components. The device is especially suited for medium power applications.

Simgui gets exclusive on distribution of Soitec 200mm SOI wafers in China

Under a new agreement, Simgui now has the exclusive right to promote, distribute and sell Soitec’s 200-mm SOI wafers in China (see press release in English here; Chinese version here). Soitec is the world’s leading producer of SOI wafers. Shanghai Simgui Technology Co., Ltd. (Simgui), a Shanghai-based semiconductor materials company, is a spinoff of the Shanghai Institute of Microsystem and Information Technology (SIMIT/CAS).

Available in different product families, the 200mm SOI wafers are used in chips such as RF ICs broadly used in smartphones and power ICs for automotive applications. This agreement, which follows a previous licensing and manufacturing partnership between the two companies, represents another key step in establishing a Chinese SOI ecosystem while also strengthening Soitec’s presence in this double-digit-growth semiconductor market.

Two additions to Altatech equipment lines: 10x faster ultra-thin film deposition; Doppler nano-defect inspection captures true sizing and positioning

The Orion Lightspeed™ inspection system by Altatech (a division of Soitec) pinpoints the true size and location of nano-scale defects inside compound semiconductor materials and transparent substrates

The Orion Lightspeed™ inspection system by Altatech (a division of Soitec) pinpoints the true size and location of nano-scale defects inside compound semiconductor materials and transparent substrates

Two new products from semi equipment manufacturer Altatech: one for ultra-thin film deposition, and one for searching out nano-defects. Altatech is a division of Soitec, best known in the advanced substrates community for its leadership in SOI wafers. This part of the company, however, develops highly efficient, cost-effective inspection and chemical vapor deposition (CVD) technologies used for R&D and manufacturing of semiconductors, LEDs, MEMS and photovoltaic devices.

The company’s newest inspection system, the Orion Lightspeed™, is capable of pinpointing the size and location of nano-scale defects inside compound semiconductor materials and transparent substrates (see press release here). The new system helps to ensure the quality control of high-value engineered substrates used in several fast growing markets including high-brightness LEDs, power semiconductors and 3D ICs. Inspection is based on Altatech’s patented synchronous Doppler detection™ technology, which determines the exact size and position of defects by making direct physical measurements with resolution below 100 nm. This provides true defect sizing, as opposed to other types of inspection equipment on the market that make indirect measurements using diffracted light to calculate approximate defect sizes. It handles 200mm or 300mm substrates, with throughput of 85 and 80 wafers per hour, respectively. Beta systems have already been installed at customers’ facilities and are demonstrating excellent performance. Shipments of production units are scheduled to begin in April 2015.

The new AltaCVD 3D Memory Cell™ is the latest member of Altatech’s AltaCVD line, designed to deposit ultra-thin semiconductor films that enable the manufacturing of high-density, low-power memory ICs used throughout mobile electronics (see press release here). The new system performs atomic-layer deposition 10 times faster than conventional atomic-layer deposition (ALD) systems, helping to meet global market demands for both high-volume production and cost efficiency in fabricating advanced memories. The system is currently demonstrating its unique capabilities and performance at one of Altatech’s key customers. Production units are available.

FD-SOI Front and Center at Very Successful Semicon Europa

An ST key ring sporting their new FD-SOI logo (Semicon Europa 2014)

An ST key ring sporting their new FD-SOI logo (Semicon Europa 2014)

Yes, GlobalFoundries is hot on FD-SOI. Yes, Qualcomm’s interested in it for IoT. Yes, ST’s got more amazing low-power FD-SOI results. These are just some of the highlights that came out of the Low Power Conference during Semicon Europa in Grenoble, France (7-9 October 2014).

This was Semicon Europa’s first time in Grenoble, the heart of FD-SOI country, and it was a terrific success. There was a ton of energy, a raft of very well-attended conferences, and vendors on the show floor were clearly pumped up by the high-quality lead generation they reported.  Attendance (over 6K visitors) and floor space were both up (>40%). Highlights follow.

 Low Power Conference

It was standing-room only for ST COO Jean-Marc Chery’s keynote. In addition to apps in FD-SOI for mobile, consumer and network infrastructure, he was very bullish on automotive, noting that this is a place FinFETs can’t go.  He indicates a major announcement is impending.

 

ST slide on an automotive app on FD-SOI (Semicon Europa 2014 Low Power Conference)

ST slide on an automotive app on FD-SOI (Semicon Europa 2014 Low Power Conference)

Next up, Manfred Horstmann, Director of Products & Integration for GlobalFoundries in Dresden said that FD-SOI would be their focus for the next few years. They’re also calling it ET-SOI (for extremely thin), and he said it’s the right solution for SOCs, especially with back biasing. Plus, it’s good for the fab because they can leverage their existing tool park. Asked if they were seeing interest, he said yes. Asked if they have customers lined up, he said yes. So watch this space – there’ll be news soon!

GlobalFoundries slide on the FD-SOI value proposition (Semicon Europa 2014 Low Power Conference)

GlobalFoundries slide on the FD-SOI value proposition (Semicon Europa 2014 Low Power Conference)

ST Fellow and FD-SOI guru Thomas Skotnicki gave an excellent talk  — he’s been ST’s champion of the concept for 26 years, and noted that the breakthrough by Soitec a few years ago in making the ultrathin SOI wafers with ultrathin box made industrialization a reality.  He sees it having a very long life, with monolithic 3D stacking replacing scaling.

The Qualcomm Technologies talk by Senior Program Manager Mustafa Badaroglu was largely about FinFET challenges, and while he observing that SOI was the best solution for leakage, cost concerns remain. With respect to FD-SOI, however, he did note that 28nm is very attractive for IoT apps. Interesting, too, that he stayed for all the other presentations and asked a lot of incisive questions about FD-SOI.

Fabien Clermidy, Sr. Expert at Leti, looked at low-power multiprocessing for markets spanning embedded through servers.  His team’s working at full bore on the Euroserver project, which leverages FD-SOI, ARM cores, monolithic 3D – you name it. He also gave some impressive details on the FRISBEE DSP, which operates from 0.3V to 1.2V, getting performance of 200MHz at the low end of the power supply and 2.7 GHz at the high end.

Leti slide on the Euroserver (Semicon Europa 2014 Low Power Conference)

Leti slide on the Euroserver (Semicon Europa 2014 Low Power Conference)

Shiro Kamohara, Chief Engineer of the Low Power  Electronics Association & Project (aka LEAP) and Renesas gave a compelling talk about their vision of FD-SOI, which they call SOTB (for silicon-on-thin-box) for IoT.  They see lots of possibilities, including for getting more life out of older nodes and fabs. They have even demonstrated a 32 bit CPU on 65nm SOTB with back bias that operates eternally (that’s right!) with ambient indoor light – clearly something to watch for.

LEAP slide on SOTB (aka FD-SOI) for IoT (Semicon Europa 2014 Low Power Conference)

LEAP slide on SOTB (aka FD-SOI) for IoT (Semicon Europa 2014 Low Power Conference)

A talk by Soitec CTO, Carlos Mazure focused on the SOI wafers for current and future generations of FD-SOI and FinFETs, as well as for RF. He noted that RF-SOI wafers for switches and antenna tuners enjoy a >80% market share.  For 28nm, he cited VeriSilicon’s figures from the recent Shanghai FD-SOI forum that indicated FD-SOI savings of 19% in area, 71% in standby power and 58% in power over bulk.

A fascinating talk by Handel Jones of IBS (see his ASN articles here) looked at IoT. We need to be thinking about billions of chips – not millions – at under $10, he said.  He sees the industry at a tipping point now, with more local intelligence coming. IBS is convinced that FD-SOI is the best technology for IoT apps, in large part because of memory driving cost, size and power consumption requirements.

Power (high & smart), power (very low), 3D and more

During the Semicon Europa Power Electronics conference, Soitec BizDev Manager Arnaud Rigny looked at high voltage devices on SOI, in “smart substrates for smart power”.  While these wafer substrates can be either “thick” or “thin” SOI (referring to the top layer of silicon), smart power (which includes analog, logic & power) typically uses a relatively thin SOI. However, in this case the top silicon uniformity needs to be greater. He said it’s a good growth area for Soitec, which is seeing an uptick of 20% in thin SOI wafers for smart power. The biggest market there is automotive.

Soitec slide on SOI for smart power (Semicon Europa 2014 Power Electronics Conference)

Soitec slide on SOI for smart power (Semicon Europa 2014 Power Electronics Conference)

There was a great turnout for Leti’s talk by Senior Scientist Claire Fenouillet-Béranger in the TechArena showing their monolithic 3D integration scheme. They’re reporting savings in area of 55%, performance of 25% and power of 12%.  Look for more breakthroughs in their paper at IEDM this December, she said.

Leti’s presentation on monolithic 3D integration (Semicon Europa 2014 Tech Arena)

Leti’s presentation on monolithic 3D integration (Semicon Europa 2014 Tech Arena)

And finally, out on the show floor, in addition to their great FD-SOI keying (see above), ST had a cool – make that freezing – demo showing the effectiveness of back biasing in FD-SOI at very low power and very, very cold temperatures. Officially titled “Temperature self-compensation on 32b RISC FDSOI28 thru dynamic body biasing down to 0.35V”, we saw the chip could run stably at 20MHz with a supply voltage of just 0.45V – that’s amazing in itself – but that it should maintain stability at -22oC is absolutely phenomenal. Body biasing dynamically compensates for the temperature fluctuations. This points up just how important FD-SOI will be for ultra-low power IoT, and in this case for things like medical apps. (If you’re very patient, you can watch this blogger’s attempt to capture the ST demo on her iPhone here.)

ST’s FD-SOI demo (Semicon Europa 2014)

ST’s FD-SOI demo (Semicon Europa 2014)

So it was a great show – kudos to the folks at Semi.  Next year it will be in Dresden, and alternate between Grenoble and Dresden from then on. And now we know that interesting things are promised for FDSOI in Dresden, we’ll certainly look forward to 2015.

 

Semicon Europa ’14 (Grenoble, 7-9 October) Includes Top Speakers at Conferences on Low Power, 3DI, Power Electronics & more

(Image courtesy: SEMI)

 

For the first time ever, Semicon Europa will be held in Grenoble this year, and FD-SOI will be a major part of it (website link here). With more than 5000 visitors and 350 exhibitors, Semicon Europa is the greatest annual event for the European microelectronics industry.

And Grenoble can fairly be considered the epicenter of all things SOI: it really took off when Leti researcher Michel Bruel invented the Smart CutTM technology there for manufacturing SOI wafers in the early 1990’s. That was then spun off to Soitec up the road, and the rest is history in the making. In fact, Forbes recently recognized Grenoble as one of the Top 5 Most Inventive Cities in the world.

So from now on, Semicon Europa will alternate between Dresden, Germany (home to GlobalFoundries’ fabs) and Grenoble, France.

Happily this is coinciding with an industry upturn, so Semi’s signed up 25% more exhibitors than last year. In addition to the exhibition floor, the 3-day event will also host over 300 speakers at over 70 conferences and more than 100 hours of technology sessions and presentations. This is no longer your quiet Euro-equipment show – this is a dynamic happening covering the entire supply chain, with a big emphasis on innovation and applications.

For those attending the popular Fab Managers Forum, the opening keynote will be made by Soitec founder and CEO André-Jacques Auberton-Hervé. In addition to heading up the world’s largest SOI wafer manufacturer, Dr. Auberton-Hervé is a member of the EC’s High-Level Group on Key Enabling Technologies (KET) and of the Electronic Leaders Group (ELG), which is in charge of implementing the European Union’s “10/100/20” strategy (they’re looking to leverage €10 Billion Public/Private Funding for a €100 Billion investment from industry for manufacturing to capture 20% of the semiconductor market value for Europe by 2020). As we reported here in ASN earlier this year, SOI-based apps are an important part of all this.

In the abstract for his Semicon presentation, Dr. Auberton-Hervé indicates he’ll describe the ELG implementation plan focused on demand accelerators (IoT, mobile convergence), supply chain strengthening, and an enhanced framework development across Europe. The Pilot Lines initiative was started in 2012, and industry is ready to invest now, he notes, with 5 pilot lines in progress, and numerous projects submitted. He’ll highlight how manufacturing performance is key in the European semiconductor industry, from materials and equipment to components design and wafer production.

 

FD-SOI at the Semicon Europa Low Power Conference

The key Semicon Europa event for the FD-SOI ecosystem will be The Low Power Conferencewhich features a cast of heavy hitters (abstracts for the talks and speaker bios are available here.) It kicks off on Tuesday afternoon (7 September) with a market analysis by ST COO Jean-Marc Chery, exploring solutions for mobile to servers and IoT.

Next up, Manfred Horstmann, GlobalFoundries’ Director of Products and Integration in Dresden will focus on SOCs for at 28/20nm. He’s using the term “ET-SOI” with BB (back bias) options. The ET stands for Extremely Thin SOI – it’s the term IBM first used for FD-SOI, but the two terms are now used seemingly interchangeably. As Horstmann notes in the conference abstract, “Being a planar device, ET-SOI devices allow the continuation of previous nodes manufacturing and design experience. Vt-tunability and low GIDL currents are a clear advantage of ET-SOI BB devices for SoC applications, too.” He’ll conclude with an outlook on FinFETs.

Thomas Skotnicki Fellow and Director of Advanced Devices at STMicroelectronics and all around giant of FD-SOI (and in particular ST’s flavor: ultra-thin box and body aka UTBB) has what sounds like a groundbreaking IoT talk. Beyond FD-SOI, he’ll cover how the technology will be used in conjunction with energy harvesting, storage, power management, sensors and MEMS. He’s got a low-power mobile app example to show us, too.

Other talks include imec on FinFETs, Imagination Technology on MIPS, Qualcomm on the “Landscape for More Moore”, and Leti on FD-SOI and 3D stacking for multicore embedded systems.

Renesas will detail their flavor of FD-SOI, which they’ve been working on for a long time (especially with innovations from Hitachi). They call it Silicon-on-Thin-Buried Oxide, aka SOTB.

David Jacquet of ST will address design, showing among other things how FD-SOI opens the way to new opportunities like Wide DVFS and dynamic leakage management. He’ll be detailing the key IP for implementing those technologies. (He’s got a great video on FD-SOI design techniques, btw – click here for more on that.)

Soitec CTO Carlos Mazure will cover the range of substrate solutions for devices across the mobile space, including RF, FD-SOI and SOI FinFET.

Wednesday morning, the conference continues with more from ST, and a must-see talk on FD-SOI and IoT costs and projections by Handel Jones of IBS. (If you’ve missed his excellent pieces here in ASN, you’ll find them all here.)

The rest of the afternoon will focus on design tools and applications, with talks from Cadence, ANSYS, Docea, HP (two talks from them), Ericsson, Schneider and Sorin (medical devices).

ASN will be there – follow us on Twitter for live coverage – and we’ll bring you more details of the key talks in the weeks to come.

 

Power and 3DI

A couple of other last notes if you’re planning a trip to Semicon Europa. On Wednesday afternoon (8 September), a 3D Integration Session (details here) will cover recent updates on 3D circuit and process technologies. Following an introduction by Ionut Radu, Soitec Senior Scientist, speakers from TSMC, imec, Leti, EV Group, Entegris, Fujifilm and Rockwood will address the status of 3D circuits, including 3D TSV and monolithic 3D integration schemes, manufacturing challenges and readiness for application specific systems.

Another terrific Semicon Europa event for the advanced substrates community will be the Power Electronics Conference: the ultimate path to CO2 reduction. Topics cover GaN, GaN-on-Si, SiC and SOI. Renault, Leti, Schneider Electric, ST, Infineon, Yole, Fairchild, and Siltronic will be presenting, as well as Arnaud Rigny of Soitec, who’ll will give a talk on smart substrates for smart power. This all takes place on Wednesday and Thursday, the 8th and 9th of September. Details can be found here.

Hope to see you in Grenoble!