Tag Archive Psemi

ByAdele Hars

pSemi: World’s First Monolithic SOI Wi-Fi FEM

pSemi (formerly Peregrine, now a Murata company) has staked its claim for having the world’s first monolithic SOI Wi-Fi front-end module (FEM)—the PE561221. This 2.4 GHz Wi-Fi FEM is the first to integrate a low-noise amplifier (LNA), a power amplifier (PA) and two RF switches (SP4T, SP3T) on a single SOI CMOS die. pSemi says it’s ideal for Wi-Fi home gateways, routers and set-top boxes (read the full press release here).

Driving this is the new WiFi standard, IEEE 802.11ax, which launches next year. While it’s largely meant to tackle issues with WiFi in crowded places, it’s also going to be welcome in high-demand home situations. (There’s a good piece on the NetworkWorld site on what 802.11ax will do compared to the current 802.11ac – you can read it here).

The PE561221 uses a smart bias circuit to deliver a high linearity signal and excellent long-packet EVM performance. (Courtesy: pSemi)

With new standards come new challenges. pSemi explains their PE561221 uses a smart bias circuit to deliver a high linearity signal and excellent long-packet error vector magnitude (EVM) performance.

“Traditional process technologies struggle to keep up with both performance and integration requirements, and only SOI can offer the ideal combination of integration and high performance,” says Colin Hunt, vice president of worldwide sales at pSemi.

The monolithic die uses a compact 16-pin, 2 x 2 mm LGA package ideal for either stand-alone use or in 4 x 4 MIMO and 8 x 8 MIMO modules. It is based on pSemi’s UltraCMOS® technology platform—a patented, advanced form of SOI that offers superior performance compared to other mixed-signal processes. UltraCMOS technology also enables intelligent integration, notes pSemi—the unique design ability to integrate RF, digital and analog components on a single die.

Volume-production parts and samples of the PE561221 are now available from pSemi. And this is just the beginning: while the PE561221 is the first product in the pSemi Wi-Fi FEM portfolio, the product roadmap includes 5 GHz Wi-Fi FEM solutions.

The folks at pSemi have been doing RF-SOI for 30 years now, and recently shipped their 4 billionth chip. For the last five years, they’ve partnered with GlobalFoundries.

ByGianni PRATA

New Chips and Design Wins for RF-SOI Pioneer Peregrine Semi

From RF-SOI pioneer Peregrine Semi comes a steady stream of new chips and design wins.

News include:

  • Two UltraCMOS® MPAC–Doherty products—the PE46130 and PE46140 (press release here). These monolithic phase and amplitude controllers (MPAC) join the PE46120 in offering maximum phase-tuning flexibility for Doherty power amplifier (PA) optimization. Designed for the LTE and LTE-A wireless-infrastructure transceiver market, the MPAC–Doherty product family now extends from 1.8 to 3.8 GHz with three separate, pin-compatible parts.
  • Design wins: Psemi’s high-linearity RF switches are designed into multiple DOCSIS 3.1 certified cable modems (press release here). CableLabs, the research and development consortium that develops the DOCSIS specification, has certified the first DOCSIS 3.1 cable modems. Of the certified modems, Peregrine Semiconductor’s RF switches—the UltraCMOS® PE42722 and PE42723—are designed into the cable modems that feature a band-select feature. The PE42722 and PE42723 are the only RF switches that enable dual upstream/downstream bands to reside in the same consumer premise equipment (CPE) device.
  • PSemi_RFSOI_productofyr

    Electronic Products magazine named Peregrine Semiconductor’s UltraCMOS® PE42020 True DC RF switch a 2015 “Product of the Year.”

    Psemi was honored with a 2015 Electronic Products “Product of the Year” award for its UltraCMOS® PE42020 True DC RF switch, the industry’s first and only RF integrated switch to operate from DC (0 Hz) to 8 GHz. (Press release here.)

  • Psemi RF engineer Tero Ranta recently wrote a chapter summarizing the technical details behind how you use SOI CMOS for impedance tuning for the book “Tunable RF Components and Circuits—Applications in Mobile Handsets.” In an interview for Psemi’s SOI University, he said, “…the main point is that you can improve the performance of mobile devices by using tuning. And you can do it by using SOI technology, which is what we use at Peregrine.” He adds, “… there are many other places in the 4G and 5G smartphone RF front-ends that will require tuning going forward to optimize system performance.”