Tag Archive RF SOI

ByAdele Hars

Foundries Expand Rapidly to Meet Soaring RF-SOI Demand (SemiEngineering)

“GlobalFoundries, TowerJazz, TSMC and UMC are expanding or bringing up RF SOI processes in 300mm fabs in an apparent race to garner the first wave of RF business for 5G, the next-generation wireless standard,” writes Mark Lapedus of Semiconductor Engineering. His recent piece, RF-SOI Wars Begin, explains why demand across the supply chain is currently tight.

Rest assured, the supply situation is being addressed fast. By next year, 300mm-based RF-SOI manufacturing (vs. 200mm) will increase from 5% to 20%. But with insatiable end-user demand for greater throughput, overall RF-SOI device demand is increasing in the double-digit range, so 200mm-based manufacturing is also expanding fast.

The front-end modules in all smartphones are built on Soitec’s RF-SOI wafer technology. The most advanced, for LTE/LTE-A, are built on Soitec’s RFeSI-SOI wafers, which have four layers to meet the demands of devices with high linearity requirements. (Courtesy: Soitec)

SOI wafer manufacturer Soitec has 70% of the RF-SOI wafer market share. The other RF-SOI wafer manufacturers – Shin-Etsu, GlobalWafers and Simgui – all use Soitec’s RF-SOI wafer manufacturing technology.

This is an excellent, comprehensive piece, that clearly explains the complexities of the markets, the devices, the manufacturing and the supply chain. It’s a highly recommended read.

BTW, the SOI Consortium is organizing a 4G/5G SOI supply chain workshop during Semicon West (July ’18). Sign up or get more information on that under the Events tab here on the consortium website.

Of course, here at ASN, we’ve been covering RF-SOI for over a decade. You can use our RF-SOI tag to access most of the pieces we’ve done over the years.

ByAdele Hars

GF Simplifies RF-SOI and FD-SOI Design for 5G with New Partnership Program

GlobalFoundries’ new ecosystem partner program, called RFwave™, aims to simplify RF design and help customers reduce time-to-market for a new era of wireless devices and networks (read the full press release here). The program aims to give designers a low-risk, cost-effective path to highly optimized solutions that leverage GF’s platforms including RF on FD-SOI and RF-SOI. The target is wireless applications such as IoT across various wireless connectivity and cellular standards, standalone or transceiver integrated 5G front end modules, mmWave backhaul, automotive radar, small cell and fixed wireless and satellite broadband.

As such, the RFwave™ partner program provides GF customers with IP design elements, EDA tools, design consultation and services and OSAT product packaging and test solutions. These products and services are validated, and comprise a plug-and-play catalog of design solutions. With this level of integration, GF customers can create high-performance designs while minimizing development costs.

Bami Bastani, senior vice president of GF’S RF Business Unit, says, “As a leader in RF, GF’s RFwave program takes industry collaboration to a new level, enabling our customers to build differentiated, highly integrated RF-tailored solutions that are designed to accelerate the next wave of technology.”

Initial members of the RFwave Partner Program are: asicNorth, Cadence, CoreHW, CWS, Keysight Technologies, Spectral Design, and WEASIC.

ByAdele Hars

SEMI Honors RF-SOI Innovators Raskin & Aspar

RF-SOI innovators Jean-Pierre Raskin of UCL and Bernard Aspar of Soitec changed the course for key RF chips. The industry has long recognized their contributions: their solution for “trap-rich” RF-SOI wafers is now the starting point to virtually every FEM in every smart phone on the planet (really!). And of course here at ASN we’ve been following their work for over a decade. Now more accolades are coming in.

The latest is the 2017 European SEMI Award, which was given at ISS Europe 2018 for “…their seminal work with radio frequency silicon-on-insulator (RF-SOI) substrates” (read the press release here). As SEMI notes, the “…award winners’ pioneering research and collaboration with academia and industry led to major advances in RF switches and ushered RF-SOI technology from concept to worldwide adoption.” Aspar and Raskin were nominated and selected by their peers within the international semiconductor community.

Bernard Aspar, Executive Vice President, Communication & Power BU at Soitec
Aspar founded CEA-Leti spinoff Tracit Technologies in 2003. He was appointed senior vice president of the Tracit Division (now the Communication & Power business unit) when Soitec acquired Tracit in 2006. He has more than 15 years of experience in direct wafer-bonding and layer transfer. Aspar has filed more than 35 patents and co-authored some 100 scientific articles. He holds engineering and Ph.D. degrees in materials sciences and a master’s degree in microelectronics from the University of Montpellier, France.

Jean-Pierre Raskin, professor, Université catholique de Louvain (UCL)
Raskin contributed to pioneering scientific studies demonstrating that silicon-based MOS technology could enable affordable, high-quality mobile devices. His findings led to the advent of RF-SOI technology and today impact the global microelectronics industry. He is an IEEE Senior Member, EuMA Associate Member and Member of the Research Center in Micro and Nanoscopic Materials and Electronic Devices of the Université catholique de Louvain, where he has been a full professor since 2007. He is author or co-author of more than 350 scientific articles.

Their advanced RF-SOI technology is now behind a wide range of applications and systems in areas including mobile devices, satellite communications, IoT, automotive radar and aerospace.

If you want to better understand all this, a few years ago UCL and Soitec teams contributed an excellent article to ASN. It clearly explains how and why these new substrates came to be. You can still read it here. (Or if you’re still a little confused about RF-SOI vs. RF on FD-SOI, here’s a piece we did back in 2015 that explains the basics.)

ByAdele Hars

Does China Mobile Care About RF-SOI for 5G? Oh Yes.

China Mobile is the world’s largest* telco. So when Danni Song, one of the company’s high-level project managers presented at the SOI Consortium’s 5th International RF-SOI Workshop in Shanghai, you can bet people listened. With each new slide, a glowing sea of cell phone cameras rose over the heads of the audience in the huge, packed ballroom.

(Photo courtesy: SOI Consortium, Simgui)

Over the last month, there’s been a lot more coverage of 5G in the press (especially after the recent Mobile World Congress (MWC) – check out Junko Yoshida’s EETimes piece for example). For ASN readers who want to know more about 5G and RF-SOI in China, here’s a reminder that Song’s presentation, and many of the others given by leading companies at the RF-SOI Workshop last fall, are now posted on and freely available the Consortium website Events page. Click here for the listing and links.

The theme of the workshop was IoT, mobile, 5G connectivity, and mmW. As Dr. Xi Wang, Director General of SIMIT/CAS (the Shanghai Institute of Microsystem & Information Technology in the Chinese Academy of Sciences), said in his opening keynote, China is strong in RF-SOI. RF-SOI will be growing at a CAGR of over 15% for the next five years, and China has production, design, wafer manufacturing and good momentum. “We will make a great contribution to the whole IC industry,” he predicted.

Of note, too, Russell Ellwanter, CEO of TowerJazz, gave what turned out to be a very inspirational keynote about Value Creation, and the importance of treating your suppliers with respect. He credits his company’s close relationship with RF-SOI wafer-supplier Soitec for TJ’s claim to the world’s best linearity. Five of their seven fabs do RF-SOI. LNA (low-noise amplifers) are a big market driver, and with RF-SOI they can integrate the LNA with the switch.

Here are some more highlights from the day – but by all means check out the presentations for details. (You can click on the illustrations to see them in full screen.)

China Mobile

In her presentation, Embrace a Brand New Cooperation in 5G Era, Song asked where RF-SOI could help in her wish list. Could it increase integration and decrease cost and power consumption? Can it help improve NB-IoT device performance? The supply chain needs to come back around into a circle, so that the telcos are connected to and get insights from the wafer substrate providers, she said.

(Courtesy: China Mobile, SOI Consortium)

China Mobile has a 5G Innovation Center, and has established test labs in 8 cities. And the government has announced a 5G launch in 2020, with pre-commercial trials now going into 20 cities. So she was at the RF-SOI Workshop as much to listen and learn as to share China Mobile’s vision.

Sony

(Courtesy: SOI Consortium and Sony)

The presentation by Kidetoshi Kawasaki, GM of Sony Semiconductor Solutions, focused on antenna tuning, which he said is one of the fastest growing things in cell phones. Antenna Tuning Progress & SOI Single Chip Integration for 4G/5G UE (note that UE = user equipment) looks at antenna aggregation, and why it is important for carrier aggregation (CA) and MIMO. Sony has developed an SOI-based next-gen process for 5G integrating passive components. That’s why RF-SOI is important and will be continued to be used in the mobile market, he said.

GlobalFoundries

GF has developed demo vehicles to help customers, said Sr. Director of the RF Business Unit, Peter Rabbeni. (Over the years they’ve shipped over 32 billion RF-SOI devices, btw.) In his presentation, RF-SOI: Delivering Performance & Integration for the Next Generation of Mobile,he noted that RF is becoming more complex than digital. As a result there is a need to integrate to help reduce cost: this is a direct correlation to the standards that are driving complexity. At the same time, performance requirements are increasing, so the challenge is driving increased performance at the same or lower cost than previous generations of products.

(Courtesy: GlobalFoundries and SOI Consortium)

To meet 4G/LTE and 5G’s evolving performance demands, GF has recently introduced two new RF-SOI platforms, which he detailed in the presentation. 8SW enables increased integration of front-end modules (FEMs), while 45RFSOI is for mmWave FEMs. (In a separate presentation, IDDO-IC CEO Denis Masliah presented a Differential Complementary Millimeter Wave Power Amplifier for 5G using 45RFSOI process, which is currently being fabbed by GF.)

RF-SOI Wafer Suppliers

The two leading RF-SOI wafer suppliers, Soitec and partner Simgui, both gave excellent presentations. Though Soitec EVP Bernard Aspar’s presentation Engineered Substrates as Foundation of Innovation in RF is not posted, he made some important points. Up til now, RF-SOI has mainly been about switches and tuners, he said, but there are other opportunities that offer the potential for huge growth. The full supply chain needs to be prepared, he said, and suppliers need to understand each other. Each technology requires the right substrate – and even as we move into sub-6GHz 5G, there is still work to be done in 4G. In fact Soitec is now offering services to help customers better understand new substrate options.

(Courtesy: Simgui, SOI Consortium)

Soitec’s partner in China, Simgui, now uses Soitec’s Smart CutTM technology for RF-SOI wafer production. Together the two are now producing over a million 200mm RF-SOI wafers/year, said Simgui Sr. Director, Kerui Wang. His presentation, RF-SOI – a Secured Substrate Supply Chain, looked at their strategic partnership with Soitec, wherein they use the same tools and processes to deliver the same products meeting the same specs.

Fabs and Fabless

Two leading fabless companies – RDA Microelectronics (which was acquired by Spreadtrum) and SmarterMicro also presented their RF-SOI activities. Although their ppts are not posted, here are a few highlights.

Longtime ASN readers will recall that RDA has been shipping high-volume, RF-SOI based chips to Samsung and others for over five years. In the presentation, RF-SOI in Current and Future RFFE Solutions, Engineering AVP Joseph Jia said that over last two years alone they’ve released almost 50 RFFE (front end) chips on RF-SOI. They see RF-SOI as the right match for switches, tuners and NB-IoT because of the low-voltage and tunability advantages.

SmarterMicro’s CTO, Peter Li, sees RF-SOI as a cornerstone of 5G. In his presentation, Reconfigurable RFFE in 5G, he said the goal is smart systems on fewer dies to decrease size and cost.

Jeff Zhu, assistant director at SMIC, presented SMIC, 0.13um RF-SOI Platform Updates. Mainland China’s largest foundry has recently moved its RF-SOI process from 180 to 130um, and he walked us through some chip designs.

Throughout the day, presenters noted that RF is a great opportunity for China to take a leadership position. As one panelist at the end of the day noted, RF depends more on expertise and talent than digital, which depends more on manpower.

Nanjing: A China RF Capital

Just before the Shanghai events, there was a 2-day event sponsored by the City of Nanjing, co-organized by SOI Industry Consortium and the City of Nanjing. Over 200 participants attended the workshop and tutorials on SOI applications, SoC development and manufacturing, EDA & IP ecosystem, as well as a design tutorial for More than Moore SOI ecosystem. Almost all of those presentations are now posted on the Consortium – click here to get them.

Some of the participants in the SOI Consortium’s delegation also had the opportunity to visit the enormous Nanjing Sofware Park. Nanjing, we learned, is often considered China’s “RF capital”. The list of the world’s major RF players working in partnership there is certainly an international who’s who.

So, lots of good RF-SOI/5G info on the SOI Consortium website – check it out!

~ ~ ~

*in terms of market value and subscribers.

ByAdele Hars

GF Delivering 45RFSOI Customer Prototypes for 5G

GlobalFoundries’ 45nm RF-SOI platform is qualified and ready for volume production on 300mm wafers (read the company’s full press release here).  It was just at the beginning of last year that GF announced the PDK availability for 45RFSOI (we covered it here).  Now there are several customers engaged for this advanced RF SOI process, which is targeted for 5G mmWave front-end module (FEM) applications, including smartphones and next-generation mmWave beamforming systems in future base stations.

In case you missed it, at the Consortium’s Shanghai symposium GF’s Mr. RF — Peter Rabbeni — gave a great talk on the company’s RF-SOI capabilities, which are very impressive (they’ve shipped over 32 billion RF-SOI devices, after all). His slides from that day are available here on the SOI Consortium website. See his slide 12 for an indication of how 45RFSOI fits into the overall picture.

Slide 12 from Peter Rabbeni’s talk at the RF-SOI Symposium in Shanghai. (Courtesy: GlobalFoundries and the SOI Consortium).

As they explain it, next-generation systems are moving to frequencies above 24GHz, so higher performance RF silicon solutions are required to exploit the large available bandwidth in the mmWave spectrum. GF’s 45RFSOI platform is optimized for beam forming FEMs, with features that improve RF performance through combining high-frequency transistors, high-resistivity SOI substrates and ultra-thick copper wiring. Moreover, the SOI technology enables easy integration of power amplifiers, switches, LNAs, phase shifters, up/down converters and VCO/PLLs that lowers cost, size and power compared to competing technologies targeting tomorrow’s multi-gigabit-per-second communication systems, including internet broadband satellite, smartphones and 5G infrastructure.

Psemi and Anokiwave are among those companies at the forefront of 45RFSOI use.  Citing the drive to deliver faster, higher-quality video, and multimedia content and services Anokiwave CEO Bob Donahue said, “GF’s RF SOI technology leadership and 45RFSOI platform enables Anokiwave to develop differentiated solutions designed to operate between the mmWave and sub-6GHz frequency band for high-speed wireless communications and networks.”

The production line is in East Fishkill, N.Y.

ByAdele Hars

2018 Greetings from the SOI Consortium (and a peek at what’s ahead)

ASN asked Carlos Mazure and Giorgio Cesana, the Executive Directors of the SOI Consortium, to take a moment to share their outlook for 2018. Here’s what they had to say.

First of all, we’d like to wish everybody in the SOI ecosystem a safe, happy and prosperous 2018. We just finished up a great year, and now look forward to exciting prospects in the months to come.

Taking a quick look back, 2017 was marked by significant growth for RF-SOI markets, and with key product announcements for FD-SOI (accompanied by a very positive change in how it is viewed). In both domains, the foundries announced their roadmaps, so now the current sweet spots and future directions are clearly established.

Let’s take a moment to consider RF-SOI. As those following wireless markets know, RF-SOI has been the basis for antenna front-end modules in all the world’s smart phones for a few years now. With 2018, we see the industry turn its attention to 5G, with sub-6GHz in priority but also addressing the mmW space. Thanks to various flavors of RF-SOI, and RF integration in FD-SOI, we’ll move into a new phase where wireless will get faster and lower power than ever before.

This will be a hot topic in both the SOI Consortium symposiums around the world this year, and in articles coming your way here in ASN.

Another hot topic will be exciting new products coming out on FD-SOI. Chip design and manufacturing is of course always a fairly long process, and we’ve talked about the importance of building the ecosystem over the last few years. Now, a good ecosystem is in place. The design tools are ready and validated at the fabs, and key IP is ready. Of course with time there will be more and more IP, but lack of IP is no longer a barrier to design starts. Embedded memory – eMRAM – is another subject that designers want to learn more about, so that will be part of what we’ll be covering.

Photo courtesy: SOI Consortium / Adele Hars

Last year we saw a growing list of successful FD-SOI tape-outs. In 2018, these chips will be ramping in volume. So this year, we look at products.

We’ll be inviting those companies that are ramping in silicon to present their chips at the various symposia we organize around the world: Silicon Valley in the spring, Tokyo in the summer, China in the fall.

Our symposia will again be accompanied by tutorial days, which have been very popular and successful. In this year’s tutorials there will be a particular focus on RF, analog and mixed-signal design, and they’ll dive deeper into how to use back biasing techniques for further boosting performance and lowering power.

So we’re at the beginning of what should be a very exciting year. We’d like to take a moment to thank all the member companies in the SOI Consortium for their enthusiastic support. And we look forward to welcoming new members over the course of this year.

With warm regards,

Giorgio Cesana and Carlos Mazure

Executive Directors of the SOI Consortium

ByAdele Hars

China FD-SOI/RF-SOI Presentations Posted; Events Confirm Tremendous Growth

The FD-SOI and RF-SOI events in Shanghai and Nanjing were absolute success stories. Over the course of five days, hundreds of executives and design engineers packed halls for talks by the leaders of the top ecosystem players, and for tutorials given by the world-renowned design experts.

These annual events have been ongoing in China now for a few years now. Citing the tremendous growth of SOI, Dr. Xi Wang, DG of SIMIT and head of the Chinese Academy of Science in Shanghai said in his keynote, “We’ve come a long way.” Five years ago, he recalled, very few people in China even knew what SOI was. Today the central government has recognized its value, and the ecosystem is riding a wave of growth and strength. A national industrial IC group has been approved for investment, and design/IP are ready. The industry has reached a consensus, he said, that FD-SOI is cost-effective and complementary to Finfet, while RF-SOI has reached an almost 100% adoption rate in front-end switches for mobile phones.

Dr. Xi Wang, DG of SIMIT and head of the Chinese Academy of Sciences in Shanghai giving a keynote address at the 5th Shanghai FD-SOI Forum. (Photo courtesy: Simgui and the SOI Consortium)

Many of the presentations are now publicly available on the Events page of the SOI Consortium website. Here are the links:

(Photo credit: Adele Hars)

Over the next few weeks, I’ll cover the highlights of each of these events. Their success clearly represents a tremendous vote of confidence for the SOI ecosystem in China and worldwide.

The success of these SOI events is a testament to China’s recognition of the great opportunity of SOI-based chip technologies. FD-SOI decreases power consumption and enables deep co-integration of digital, analog, RF, and mm-wave. RF-SOI enables 4G and 5G connectivity with even richer integrated functionalities. It allows the fusion of the RF switch, LNA, and PA, for supporting both traditional sub-6GHz but also mm-wave frequency ranges. SOI technologies also offer a means for China – already the world’s largest chip consumer – to leap to the forefront of chip design and manufacturing,” noted Giorgio Cesana, Executive Co-Director of the SOI Consortium.

The events were followed by top tech news outlets in China. Links follow below (the pieces are in Chinese; or you can open them in Google Translate or Chrome to read them in the language of your choice). Tip: in these pieces you’ll find lots of great pics of key slides, including some that have not been shared on the Consortium website.

FD-SOI coverage included pieces in top pubs such as EETimes China, EEFocus, EDN China (plus a focus piece) and Laoyaoba to name a few. Leading bloggers also posted excellent overviews as well as pieces about specific presentations, including those by Samsung, GlobalFoundries and Handel Jones.

RF-SOI coverage included pieces in leading publications such as China IC, EETimes China, EDN China, EEFocus and SemiInsights.

ByAdele Hars

Where to Sign Up for FD-SOI and RF-SOI Learning Opps in China?

Suddenly they’re everywhere: opportunities to learn more about FD-SOI and RF-SOI. Over the next couple of months you can find them in China, Europe and Silicon Valley. Some are organized by the SOI Consortium, others by foundries and partners.

Here’s a quick listing with links for more info on how to register for upcoming China events.

Nanjing, China. SOI Workshop & Tutorial, 21-22 September 2017.

Organized by the Nanjiing city government and the SOI Consortium. The first day is packed with top presenters, including NXP, ST, Samsung, GlobalFoundries, Cadence, Synopsys, as well as design and IP partners. The second day is a tutorial covering FD and RF-SOI, as well as imagers and photonics. Sessions will be given by Synopsys, Silvaco, Incize, ST, Soitec, and the SOI Consortium.

Shanghai, China. FD-SOI Tutorial. 25 September 2017.

Organized by VeriSilicon and the SOI Consortium. Tutorial covers: tech overview; analog/RF/mixed-signal; neuromorphic and IoT processors; EDA & design process flow; eNVM; and using forward & reverse body bias. Session leaders are from SOI Consortium, GlobalFoundries, ST, Soitec, UCBerkley, Evaderis and Greenwaves.

Shanghai, China. FD-SOI Forum. 26 September 2017.

Organized by VeriSilicon, Simgui, SIMIT and the SOI Consortium. The focus is on Ultra Low Power computing, RF, EDA/IP ecosystem growth and accelerating adoption. Presentations by Dr. Xi Wang of China’s SIMIT/CAS, GF’s CEO Dr. Sanjay Jha, Samsung’s EVP & GM Dr. ES Jung, as well as from Ron Martino, VP & GM from NXP; Paul Boudre, CEO of Soitec; IBS, NSIG, GF, UC Berkeley, VeriSilicon, Cadence and Synopsys. There’s also a very impressive line-up for a final panel discussion.

Shanghai, China. International RF-SOI Workshop. 27 September 2017.

Organized by Simgui, Sitri, SIMIT, VeriSilicon and the SOI Consortium. Now in its 5th year, this conference has grown very quickly: last year it was in a ballrooom with standing room only (note that RF-SOI chips are now found in pretty much every smart phone on the planet). The focus this year is on IoT, mobile, 5G connectivity, and mmW. Keynotes are from TowerJazz, Sony and China Mobile. Presentations from RDA, SMIC, Simgui, Will-Micro, GF, Soitec, Silvaco and Screen.

BTW, for events organized by the SOI Consortium, many of the presentations are available on the website (from Tokyo this summer, for example, and Silicon Valley last spring – and going on back through 2015). Scroll down through Events to Past Events to find them.

ByAdele Hars

Tokyo SOI Workshop – Day 2 Recap (Part 2)

This is the second part of ASN coverage of Day 2 of the recent SOI Workshop in Tokyo, which was dedicated to the “Convergence of IoT, Automotive through Connectivity”. Many of the presentations are now posted and freely available – click here to see the full list.

(In case you missed them, Day 1 and Day 2 – Part 1 were covered in previous posts.)

GlobalFoundries & 5G

Peter Rabbeni, GlobalFoundries’ Sr. Director of 5G BizDev and Product Line Marketing focused on mmWave and why/how 5G. In his talk, Delivering on the Promise of 5G: Semiconductor Solutions for the Next Wave of Data, he pointed out that there’s not one solution for all use cases – but there is an SOI solution for all the opportunities.

(Courtesy: GlobalFoundries, SOI Consortium)

You need mmWave for latency, simultaneous connectivity, energy-efficiency and mobility, he explained. mmWave addresses the trade-off between distance and data rates. In a phase array, the beam is steered, but because of atmospheric absorption, you have to do multiple beams at high frequencies.

RF-SOI technology is already found in virtually every smartphone in the world. Now, he sees two main benefits in RF-SOI (a partially depleted technology that uses “trap-rich” substrates, btw) in the move to 5G and mmWave. One is device stacking, which you can do in SOI to overcome the Johnson Limit (a tradeoff between breakdown voltage and frequency). The other comes from the benefits inherent in the substrate: high-resistivity, high-Q and isolation. It means you can have smaller arrays for each element, and fewer chips per array. That’s key: you need those smaller arrays for handsets and customer premises equipment.

(Courtesy: GlobalFoundries, SOI Consortium)

Different designers are taking different approaches to RF, he notes.  There are those doing FEM-centric designs, which integrate from the antenna back toward the transceiver.  And then there are those that are doing integration-centric designs, which target integration from the transceiver/BB toward the antenna.  The first approach is being driven by those customers with unique IP and presence in the front-end module space.  The other is being driven by folks with IP and presence in the SOC space.  Both will exist in some form, he contends.  45RFSOI is well aligned with the first case and focused primarily with FEM leadership performance and integration.  22FDX, on the other hand, is very well suited for transceiver/baseband ADC/DAC integration and can integrate the FEM functionality as well.  Pathfinding on the FEM integration component is on-going for 22FDX.

MIPS/Imagination

SOI is “…the perfect solution to our needs”, said Steven Yeung, Design Manager with MIPS/Imagination Technologies in his talk, MIPS Leading Heterogenous Compute in Automotive & IP. The cost of failure is increasing he noted, citing the ISO standard 26262 for functional safety in road vehicles, and SOI “helps a lot”.

(Courtesy: MIPS/Imagination Technologies & the SOI Consortium)

Leti Paves the Road Ahead With SOI

As noted in the presentation title, research powerhouse Leti sees that the Future of the Automotive Industry is Paved With SOI. Vincent Roger of Leti’s Corporate Business Development made convincing arguments as to why FD-SOI is the right solution for automotive:

  • you need advanced digital circuitry for all computational tasks in the automotive environment

  • the 3-generation node gap between automotive and consumer is closing

  • FD-SOI is more power efficient than planar bulk (both at 28 and 22nm) or FinFET (16nm)

  • it’s simpler in terms of design and IP portability than FinFET

  • it’s a proven solution, with better reliability and lower design costs

  • it addresses all performance levels and communications

  • it simplifies integration of control electronics for distributed sensors

Leti is actively working on getting RF capabilities in FD-SOI adopted more quickly. For example, they are developing RF models for their UTSOI-2 modeling suite for FDSOI, including back bias effects. And they’re also developing innovative basic design blocks that prove the technology validity and add new functionality.

(Courtesy: Leti and the SOI Consortium)

He also sees an even bigger role for RF-SOI, the technology of choice for RF Front End Modules for connected vehicles and 5G applications. With Soitec, they’re working to keep improving existing substrates and introduce new concepts.

SOI Wafer Capacity Expanding

SOI wafer suppliers (Soitec, SEH and Simgui) are expanding capacity, said Soitec EVP Thomas Pilisczcuk. His talk, The Role of Substrates in Accelerating Mass Adoption of SOI Technologies, reviewed the various SOI substrates and partners across FD-SOI, RF-SOI, photonics, power, image sensors and more.

Soitec is launching a program called FIRST (for First Integration Ramp of SOI Toolbox) to help customers reach competitive yields fast. They are also help customers facilitate SOI integration into design and manufacturing.

More Joining In, Looking Ahead

There are still more talks that are now posted on the SOI Consortium website. IHS/Markit made a very interesting high-level presentation on LIDARs & Sensor Fusion ECUs Advancing ADAS Architectures Toward Automated Driving, which called for chipmakers to integrate more features. Nokia Future X Network for 5G & IoT looked at infrastructure (they use their own chipsets). ST looked at smart cities in Sensor-to-Cloud Connectivity for IoT.

Equipment makers are also eager participants in the FD-SOI ecosystem. Screen’s presentation was entitled Full Participation Within the SOI Consortium. The Applied Materials talk, Enabling SOI and IoT: An Equipment and Materials Engineering Perspective, covered how they’re working with their customers and their customers’ customers to understand the trends and enable the device roadmap.

Next Stop: Shanghai!

Mark your calendars: the next workshop sponsored by the SOI Consortium will be in Shanghai this September 26th and 27th  (one  day is all about FD-SOI, the other about RF-SOI). You can now register or ask for an invitation: see  Events on the SOI Consortium website. Last year’s Shanghai event was really dynamic and absolutely packed, so you’ll want to make sure you register early. (But if you can’t make it, you can of course read about later it in ASN!)

ByAdele Hars

Peregrine in volume shipping of UltraCMOS® 60 GHz RF SOI Switches

Peregrine announces volume shipping of their UltraCMOS® 60 GHz RF SOI switches featuring fast switching, high isolation, low insertion loss and excellent linearity.

Peregrine Semiconductor recently announced immediate availability of volume production parts for their UltraCMOS® 60 GHz RF SOI switches. (Read the full press release here.) The PE42525 and PE426525 extend Peregrine’s high frequency portfolio into frequencies previously dominated by GaAs technology. Both 60 GHz switches deliver exceptional performance in all key RF parameters and have a fast switching speed of only 8 nanoseconds.

Kinana Hussain, Peregrine’s director of marketing says, “These high frequency switches are garnering a high adoption rate in multiple markets including 5G, test and measurement, and defense. Not only do these switches break paradigms in high frequency, they also break paradigms in SOI fast switching.”