Tag Archive Soitec

Samsung’s (Very!) Good 28FDS News Just Keeps Coming

Since the beginning of the year, there’s been a steady stream of excellent news around Samsung Foundry’s 28FDS, their highly successful 28nm FD-SOI offering. Let’s take a look at what’s been happening, as things do seem to be accelerating. By way of reminder, they announced the industry’s first eMRAM (embedded MagnetoResistive RAM) testchip tape-out milestone on 28FDS in September 2017 (you can read the press release here) – which was just a year after they had announced mass production of 28FDS process technology.

At the end of 2018, Arm announced the industry’s first Embedded MRAM (eMRAM) compiler IP built on Samsung Foundry’s 28FDS process technology.

Follow that with this announcement at the beginning of 2019: Soitec Expands Collaboration with Samsung Foundry on FD-SOI Wafer Supply. The two companies announced that Samsung had secured a high-volume supply of FD-SOI technology to meet industry’s current and future demands especially in consumer, IoT and automotive applications.

In March came two more big announcements. First: Samsung Electronics Starts Commercial Shipment of eMRAM Product Based on 28nm FD-SOI Process. As they noted in the PR, “Samsung’s 28FDS-based eMRAM solution offers unprecedented power and speed advantages with lower cost. Since eMRAM does not require an erase cycle before writing data, its writing speed is approximately a thousand times faster than eFlash. Also, eMRAM uses lower voltages than eFlash, and does not consume electric power when in power-off mode, resulting in great power efficiency.”

Hard on the heals of that came the news that Arm and Samsung Announce IP Platform including eMRAM for 18nm FD-SOI.

At the SOI Consortium’s Silicon Valley Symposium in April, Tim Dry (he’s Samsung’s Director of Foundry Marketing for Edge and End Point), gave a terrific presentation. Entitled Samsung’s FDS with MRAM: Enabling Today’s Innovative Low Power Endpoint Products, it details the company’s FDSOI roadmap for the IoT Endpoint Platform (and yes, you can download in its entirety).

Then in May at the big Samsung Foundry Forum in Silicon Valley, Arm, in collaboration with Samsung Foundry, Cadence, and Sondrel, demonstrated the first 28nm FD-SOI eMRAM IoT test chip and development board. The Musca-S1 test chip demonstrates a new choice in SoC design for IoT solutions, said Arm. (Sondrel, btw, is Europe’s largest independent IC design consultancy.)

In parallel, Cadence announced: Cadence Custom/AMS Flow Certified for Samsung 28nm FD-SOI Process Technology. Especially aimed at digitally-assisted analog designs, what’s new here is that the Cadence custom and analog/mixed-signal IC design flow is now Samsung Foundry certified for 28FDS. Samsung’s 28FDS PDK techfile is Mixed-Signal OpenAccess ready, enabling customers to deploy OpenAccess-integrated, fully interoperable Virtuoso-Innovus implementation flows.

For its part, at its Foundry Forum, Samsung unveiled extensions of the company’s FD-SOI (FDS) process and eMRAM together with an expanded set of state-of-the-art package solutions. They indicated that the development of the successor to the 28FDS process, 18FDS, and eMRAM with 1Gb capacity will be finished this year.

And finally, companies like NXP are shipping exciting new products fabbed on Samsung’s 28FDS. Ron Martino, VP & GM of NXP’s i.MX Application Processor Product Line covered key products in his presentation at the SOI Consortium’s Silicon Valley Symposium (see our coverage here). Among them: the i.MX7ULP for long battery life with 2D & 3D graphics for wearables and portables in consumer and industrial applications; the i.MX 8 and 8X subsystems for automotive and industrial applications; and the i.MX RT series of “cross-over” processors. The i.MX RT ULP (real-time, ultra-low-power) series, which Martino says is the “new normal”, deals with a high number of sensor inputs. The i.MX RT 1100 MCUs, which have been qualified for automotive and industrial applications, are breaking the gigahertz performance barrier.

In July, linuxgizmos.com reported that, “In June, NXP began volume shipments of its super power-efficient i.MX7 ULP, which it announced in 2017. The SoC is billed as the most power-efficient processor on the market that also includes a 3D GPU. […] the ULP version includes a 3D graphics capable Vivante GC7000.” (Vivante, btw, is a VeriSilicon company, which is an SOI Consortium member and a leading proponent of FD-SOI design and IP in China and worldwide.)

This is leading to some really nice wins for NXP. For example, they’ve got Amazon’s Alexa Voice Service (AVS) leveraging the i.MX RT crossover processor, enabling developers to quickly and easily add Alexa voice assistant capabilities to their products. The RT series has rapidly been expanded, with versions for voice-controlled devices and offline face and expression recognition capabilities for smart home, commercial and industrial devices.

Also announced this summer: NXP and Microsoft Bring Microsoft Azure Sphere Security to the Intelligent Edge with a New Energy-Efficient Processor. That collaboration includes development of a new crossover applications processor in NXP’s i.MX 8 series integrating Microsoft’s Azure Sphere security architecture and Pluton Security Subsystem. Their customers “will be able to harness the high-performance and energy efficiency of NXP’s i.MX 8 applications processors combined with Microsoft’s unequaled security and assurance provided by Azure Sphere certified chips”.

As Martino concluded in his presentation, “The future of embedded processing [is] enabled by FD-SOI.” And Samsung Foundry’s FD-SOI offerings are clearly a massive enabler of that future.

€103M OCEAN12 Project for Automotive/Aeronautic FD-SOI in Europe (Interview)

ASN had a chance to talk to François Brunier of Soitec, who’s leading this important project.

Advanced Substrate News (ASN): Can you tell us briefly about OCEAN12?

Francois Brunier (FB): OCEAN12 stands for Opportunity to Carry European Autonomous driviNg further with FD-SOI technology up to the 12nm node.

Francois Brunier, Partnership Program Manager, Soitec.

OCEAN12 deals with “Ultra-low power computing solutions for automotive and aeronautics using all the range of FDSOI technologies”. This project with a budget of 103M€ brings together 27 partners from 7 different countries. The project received the ECSEL JU* label under the 2017 call.  ECSEL is an EU-driven public-private partnership enabling the co-financing of innovation in electronic components and systems both by Member States and the European Union.

ASN: Why is this project needed?

FB: As of today a car has around 500 million transistors. These electronic components represent already an important vector of valorization and differentiation for the automotive industry and for the consumer. The increased autonomy of the vehicles will require a very strong build-up of computational capacities. 50 to 100 times more transistors could be required for a level 5 (fully autonomous car). Following this trend an autonomous car will require power consumption equivalent to 50 to 100 computers running continuously (without taking into account the car propulsion).

The OCEAN12 partners.

The power consumption of these components becomes a key element in the choice of technologies. We believe that our technologies on SOI present the best assets to meet this challenge.

The FD-SOI substrates, technologies and designs developed in OCEAN12 offer a palate of different solutions to this challenge: increased performance for data processing (including Artificial Intelligence); much higher energetic efficiency; and smaller form factors to fit in embedded systems like autonomous cars with higher integration and reliability, and enabling safe connectivity.

The OCEAN12 project will demonstrate that SOI technologies are able to meet these challenges through relevant demonstrators in the targeted fields.

ASN: What are the project goals?

FB: OCEAN12 will bring concrete solutions to the main challenges of smart connectivity and low power consumption in the automotive industry.

As such, OCEAN12 will build awareness around the key enabling technologies in substrate development, transistor behavior, and the design and fabrication of integrated circuits up to the system and end-user application levels. We will show that the technology is advantageous for automotive and aerospace applications, which are strategic sectors for Europe. Having the whole supply chain in Europe means having trusted and secured components made in Europe.

The OCEAN12 project goals stand on three pillars:

First: Confirming the technology foundation. Ocean12 puts the FD-SOI substrate and device developers in direct contact with the full value chain of suppliers and end users. This gives the entire ecosystem visibility into current and future needs, and ensures that substrate and device solutions are both technically feasible and correctly aligned with actual system requirements.

Second: Creating concrete, innovative demonstrators in automotive (Audi, Bosch) and aeronautics (Airbus, Thales). These demonstrators are a first step in defining the context and environment to prove the advantages of these technologies in real application cases, showing they are useful and as such prefigure a final system and a potential future product roadmap. Demonstrators should be as close as possible to the final application.

Third: Broadening the design ecosystem, with the big companies, the small- and medium-sized companies (SMEs) and the research organizations (universities, RTOs). We have a critical mass of 16 design ecosystem partners focusing their efforts on FD-SOI. The project leverages that dynamic FD-SOI design ecosystem for IC product migration to FD-SOI and the creation of new IP. Inventing the future components in Europe is also key.

ASN: Can you tell us more about the demonstrators? When will we see them?

FB: There are four demonstrators. All these demonstrators will be delivered by the end of the project in 2021:

Always-on wake-up systems (Audi, Bosch, Leti). With such a system we can imagine an application to monitor our car when it is parked in a parking lot for a long time. The sensors would remain aware of everything that goes on around the car. Based on sensor observations, the car can make decisions on further actions to take. This can be used in many future car applications like intrusion detection or vehicle access systems. But you will not have to worry about battery drain: even though all the sensors are always on, they go right back into a very low-power sleep mode thanks to FD-SOI technology.

mm-Wave integrated radar SOCs (Bosch and Audi), which will benefit from all the innovations of FD-SOI thanks to its low consumption properties, but also the optimization of the sensors. The performance gain is made over the entire system with adaptations between analog and logic.

High-performance video processor for aeronautics. (Airbus, Thales, Kalray). Kalray, a French SME working on Massively Parallel Processor Arrays (MPPA) aims to demonstrate an ultra-low power, low-cost, high-performance neural processor on FD-SOI technology. This demonstrator would be key for Airbus and drones with high-performance, low-power cameras. Airbus and Audi have partnered on air and ground mobility services.

Microcontroller plug-and-play board. This demonstrator lead by ST will allow for the development of new solutions in the domain of GNSS/GPS.

ASN: Can you tell us more about the partners?

FB: The OCEAN12 consortium of 27 partners involves 8 large groups, 9 SMEs and 10 universities/RTOs. These partners come from 7 different European countries.

The eight large groups include: Soitec, the world’s leading provider of FD-SOI substrates; EVG, a leading global equipment supplier; GlobalFoundries and STMicroelectronics, the two major European FD-SOI foundries; and Bosch, as a Tier 1 automotive supplier. At the top of the value chain, high-end European automotive manufacturer Audi, the avionics industrial giant Airbus, and Thales for security issues, will develop product demonstrations.

Ten highest-level research institutes support the industrial consortium. They include CEA-Leti (FR), Fraunhofer(GE), IMS (FR), INP Grenoble (FR), TU Dresden (GE), U. Paderborn (GE), Bundeswehr U. Munich (GE), Eberhard Karls U. Tübingen (GE), Instituto de Telecomunicações (PT), and Warsaw UT (PL). They increase the competitiveness through technological innovation and transfer of technical know-how while gaining new expertise working with global leaders.

In addition, OCEAN 12 has a very strong SME consortium covering the supply chain in the fields of new equipment, IP, system integration and fabless companies. They include: IBSUnitySC (HSEB), MunEDAKalrayAED EngineeringISD, EVOTEL, M3 Systems and Design&Reuse.

All these partners have longstanding experience of cooperation in various national and international frameworks and are specialists in their fields of activity. Their contributions are essential for the success of the project.

ASN: What is the timetable?

The OCEAN12 kick-off event at Soitec’s headquarters near Grenoble.

FB: The project started on April 1st 2018. The kick off with all the partners was held at Soitec on 29 September 2018. It was a great success. The project runs through December 2021, by which point everything has to be demonstrated.

ASN: Can you clarify the funding structure?

FB: The budget is about €103.6M. If the project succeeds, we get European Commission funding. In that case, just over 20% of the eligible cost – about €23M – is subsidized at the European level. The seven countries with companies or organizations participating in the project will then roughly match the European subsidies, contributing about €27M.

These ECSEL-type public-private projects are a tried and true model in Europe, maximizing synergy across ecosystems.

To conclude, in the name of the consortium I’d like to thank the ECSEL JU, the European Commission and our National Funding Agencies from France (DGE), Germany, Portugal, Greece, Spain, Austria and Poland. Such a project would not exist without them.

______

*ECSEL JU: Electronic Components and Systems for European Leadership Joint Undertaking

Register Now! Our Semicon West Workshop – IoT & the SOI Supply Chain

If you’re going to Semicon West this year, be sure to attend the SOI Consortium’s workshop on how IoT is driving the SOI supply chain. There’s a great line-up of speakers – see the program below.

IoT means many things to many people but everyone agrees it’s here and growing quickly. IoT, including machine learning and movement to the edge, is fueling innovation as the high compute and ultra-low energy requirements are pushing technology to deliver on these needs. The well-known characteristics defining IoT of “Sense”, “Compute”, and “Act” put additional burden on technology to full these requirements across a variety of use cases and environments without sacrificing reliability or quality.

All the various forms of SOI technology from FD-SOI to High-Voltage to RF-SOI, are uniquely situated to deliver on the promise of today’s as well as tomorrow’s IoT roadmap. The supply chain for all forms of SOI technology is in place. This workshop will discuss the current and future solutions from a supply chain perspective.

Speakers include experts from SOI Consortium members Applied Materials, NXP, GlobalFoundries and Soitec.

Entitled The Internet of Things, Driver of the SOI Supply Chain, the workshop will take place at the Moscone Center South, Wednesday July 10th in Room 301. It will run from 1 pm until 4:30 pm. Anyone and everyone who is registered for Semicon West is welcome. Here is the sign-up page.

It’s a great program:

1:00pm – Welcome by Semi

1:10pm – IoT/AI/Edge Market – Using SOI Through-out, Jon Cheek, Senior Director, NXP

1:35pm – The SOI Opportunity, Manish Hemkar, Director, Semiconductor Products Group, Applied Materials

2:00pm – The Foundry IP Ecosystem, Jamie Schaeffer, Sr. Director, GlobalFoundries

2:25pm – Engineered Substrates – Enabling the IoT Revolutions, Eunseok Park, Director, Emerging Technology in Strategic Marketing, Soitec 

2:50pm – Enabling the SOI Era, Thomas Uhrmann, Head of Business Development, EVG

3:15pm – Panel: The Internet of Things, Driver of the SOI Supply Chain, Moderator: Carlos Mazure, Chairman, SOI Industry Consortium. Panelists include:

  • Manish Hemkar, Director, AMAT
  • Yoshio Kitahara, President & Managing Director, Kokusai Europe
  • Thomas Uhrmann, Head of Business Development, EVG
  • Jon Cheek, Sr. Director, NXP
  • Thomas Piliszczuk, EVP Strategy, Soitec
  • Jon Kretzschmar, Manager of Product Sales & Marketing, TEL America

4:05pm – Closing remarks, Carlos Mazure, Chairman, SOI Industry Consortium

4:20pm – End

This is a great chance to learn more about SOI and the SOI Consortium. Don’t miss it!

And while you’re at West, you should also check out a related event. SOI Consortium member Leti will be teaming up with Fraunhofer for a workshop entitled New Paradigms in Microelectronics–Providing R&D for the 21st Century. That happens at the nearby W Hotel in San Francisco on Tuesday, July 9th at 5:00pm. Click here for more information on that.

SOI Consortium & Ecosystem Shines at SOI Academy (Shanghai) & WCS (Nanjing)

The SOI Consortium and member companies had a significant presence at two important events in China recently: the World Semiconductor Congress (WCS) in Nanjing and the SOI Academy, including an FD-SOI Training Day in Shanghai.

Nanjing is especially known as a leading RF chip design hub in China, but WCS went well beyond RF. The three-day 2019 event was held at the Nanjing International Expo Center. It attracted over 30,000 visitors, 5000 of whom attended the various summit forums.

Presenting at WCS ’19 in Nanjing (clockwise from top left): Wayne Dai, CEO/Founder, VeriSilicon; Carlos Mazure, Executive Director, SOI Consortium; Giorgio Cesana, Director, STMicroelectronics; Christophe Tretz, Design Expert, SOI Consortium.
(Photos courtesy: WCS)

The SOI Consortium organized the SOI Forum, which was part of an afternoon Innovation Summit. Presentations were given by members of the SOI Consortium team, and by leaders from our membership, including Simgui, NXP, Incize, ST, IBM, Cadence and Xpeedic. Some of those presentations are now available from our website — click here to get them.

Earlier in the day, SOI Consortium member VeriSilicon participated in a morning session on AI and IoT Wireless Communications. They presented their low-power Bluetooth design platform for GlobalFoundries 22FDX, and CEO Wayne Dai moderated a lively round-table discussion.

Following hard on the heels of the Nanjing event, the SOI Consortium team and members headed to Shanghai for the SOI Academy 2019, hosted for the second year in a row by member SIMIT (Shanghai Institute of Microsystem and IT under the Chinese Academy of Sciences). The two-day event attracted more than 250 professionals from more than 100 domestic and foreign IC companies and research institutes.

Keynotes by SOI Consortium Executive Director Carlos Mazure, SITRI CEO Mark Ding and Jean-Eric Michallet, Head of the Microelectronics Components Department at Leti and bizdev director for the SOI Consortium focused on the SOI ecosystem. The SITRI and Leti talks also gave updates on their research and industrialization alliance. Further talks were given by leaders from Soitec, GlobalFoundries, VeriSilicon, IBM and Xpeedic. These addressed the growing FD-SOI ecosystem, applications in automotive electronics, 22 nm and 10 nm FD-SOI devices, advanced SOI substrate technology, China’s FD-SOI development, the FD-SOI manufacturing process, product design, EDA tools and all aspects of industry’s software and modeling value chain.

Several speakers noted that more and more local Chinese customers are actively adopting FD-SOI for low-power, high-performance chips.

SOI Academy, Shanghai, 2019, FD-SOI Training Day attendees.
(Photo credit: SIMIT)

The second day was devoted to hands-on professional training, given by experts from Leti using an actual PDK and punctuated by in-depth discussions. This helped the IC designers to fully understand the advantages and flexibility of FD-SOI in low-power logic, analog/mixed-signal and RF.

All in all, “It was a great success,” concluded Jean-Eric MICHALLET, Head of the Microelectronics Components Department at Leti and bizdev director for the SOI Consortium. Plans for the next SOI Academy are already underway, with plans to extend the topics to include more on photonics, RF, power and MEMS.

FD-SOI for RF & mmWave: Free Workshop, 4 April ’19, Grenoble

FD-SOI for RF and mmWave communications is a hot topic. In high-data rate communications like RF and millimeter-wave devices in particular, FD-SOI delivers high-performance with numerous unique advantages, making it most likely the fastest RF-CMOS technology on the market.

If you’d like to take a deep dive and learn more about it, Soitec and Incize are sponsoring a free, full-day workshop in Grenoble on April 4th, 2019. Click here for registration information. The workshop follows the day after the IEEE/EDS EuroSOI-ULIS conference there (you can read about the full conference in a previous ASN post).

This technical workshop will cover the FD-SOI technology platform with a focus on its compatibility with RF & mmWave communications. Attendees will hear from notable FD-SOI leaders and experts from leading industry and research institutions presenting updates on key developments and building blocks across the semiconductor value chain. Topics will include circuit design, device fundamentals, simulation and characterization of RF devices, test, CMOS technology and substrate technologies enabling FD-SOI. In addition, the workshop will include an overview about how FD-SOI technology is benefiting current and future end user applications.

Here’s the agenda:

FD-SOI technology platform: new standards for emerging consumer electronics [Click to enlarge.]

 

SOI Wafers on the Move – News from Soitec with Samsung, Simgui, China Mobile, Renesas & More

The world’s SOI wafer leader, Soitec is posting strong sales and issuing a steady stream of compelling announcements. This is clearly good news for everyone in the SOI ecosystem, as the outlook for the various families of SOI wafers is excellent.

Soitec CEO Paul Boudre told ASN, “I’m excited because of the fundamentals behind the growth. Reaching down the supply chain gives us the ability to help our customers with the next generation. We’re not in a technology push, but in a technology pull. It’s long-term growth we’re seeing.”

Paul Boudre, CEO, Soitec

Soitec has brought people from the device side into the company to better understand the solutions customers need, he said. They’re talking to the carmakers, telcos and more, working one-on-one with them to understand the constraints and the problems they are trying to fix, in order to deliver a solution based on the Soitec product roadmap.  Boudre is particularly excited about 5G. It’s not just new handsets and systems: the entire infrastructure will require a massive upgrade, across which Soitec has a role to play supplying SOI wafers.

They also have other SOI and engineered substrates for specific markets like filters, displays, imaging and power. He adds that they’re seeing nice growth in SOI wafers for photonics, driven by cloud computing, and for smart power in markets like automotive and white goods.

Here’s a roundup of some recent developments. Chips made on RF-SOI wafers are in every mobile phone made on the planet these days, so lets look at what they’re doing there first. We’ll follow that with an update on the surge of activity on FD-SOI wafers.

Simgui, RF & Power

It’s no secret that the runaway success of RF-SOI for front-end modules (FEMs) in mobile phones has stretched wafer capacity mightily. To help address this, in February 2019 Soitec and China’s SOI wafer leader Simgui announced an enhanced partnership and increased production capacity of 200mm SOI wafers in China, securing future growth. The two companies redefined their manufacturing and licensing relationship to better serve to better serve the growing global market for RF-SOI in mobile and Power-SOI in automotive and consumer electronics.

(Image courtesy: Simgui)

Since the two companies signed their original licensing and technology transfer agreement in May 2014, Simgui has mastered Soitec’s Smart Cut™ proprietary process to deliver world-class RF-SOI and Power-SOI products. Simgui’s strategic partnership with Soitec allows them to use the same tools and processes to deliver the same products meeting the same specifications.

Simgui has invested in their Shanghai fabrication line in order to double annual 200mm SOI wafer production capacity from 180,000 to 360,000. The fab is production ready, having been qualified by multiple key customers inside and outside China.

Simgui CEO Dr. Jeffrey Wang notes, “China has design, wafer manufacturing and good momentum in the IC industry. We are committed to our strategic partnership with Soitec to keep advancing SOI as China’s key differentiator.”

With China Mobile

China Mobile’s interest in the SOI ecoystem is clear: they’ve presented at the SOI symposia in Shanghai for two years running now. In a February 2019 press release, Soitec announced that they’ve joined the China Mobile 5G Innovation Center – and they’re the first materials supplier to do so. The China Mobile 5G Innovation Center is an international alliance chartered to develop 5G communication solutions for China, the world’s largest wireless communications market with 925M mobile subscribers. The Center aims to accelerate the development of 5G by establishing a cross-industry ecosystem, setting up open labs to create new products and applications, and fostering new business and market opportunities.

Soitec’s RF-SOI wafers have been critical in the deployment of 4G communications, and the opportunity in 5G is even bigger. Plus the company’s FD-SOI wafers enable the technology that brings unique RF performance, making it an ideal solution for many applications including mmWave communications such as 5G transceivers. They are also enabling full RF and ultra-low-power computing integration for IoT and edge computing.

For Samsung Foundry

In January 2019, Soitec announced that they have expanded their collaboration with Samsung Foundry on the FD-SOI wafer supply, securing the high-volume Samsung needs to meet industry’s current and future demands in consumer, IoT and automotive applications. The agreement is built on the existing close relationship between the companies and guarantees wafer supply for Samsung’s FD-SOI platform starting with the 28FDS process.

“Samsung has been committed to delivering transformative industry leading technologies,” said Ryan Lee, Vice President of Foundry Marketing at Samsung Electronics. “FD-SOI is currently setting a new standard in many high-growth applications including IoT with ultra-low-power devices, automotive systems such as vision processors for ADAS and infotainment, and mobile connectivity from 5G smartphones to wearable electronics. Through this agreement with Soitec, our long-term strategic partner, we hope to lay the foundation for steady supply to meet high-volume demands of current and future customers.”

“This strategic agreement validates today’s high-volume manufacturing adoption of FD-SOI,” said Christophe Maleville, Soitec’s Executive Vice President, Digital Electronics Business Unit. “Soitec is ready to support Samsung’s current and long-term growth for ultra-low power, performance-on-demand FD-SOI solutions.”

Silicon Catalyst Partner

In February 2019 Soitec announced they’d become a strategic partner in Silicon Catalyst’s start-up incubator. Silicon Catalyst is a Silicon Valley-based incubator providing silicon-focused start-ups access to a world-class network of advisors, design tools, silicon devices, networking, access to funding and marketing acumen needed to successfully launch their businesses.

(Image courtesy: Soitec, Silicon Catalyst)

Soitec will engage in this start-up ecosystem to gain insight into the newest technologies and applications across high-growth markets, and to guide nascent technologies to successful market penetration.

“As a Strategic Partner of Silicon Catalyst, Soitec has a unique opportunity to grow our visibility among early-stage semiconductor companies,” said Thomas Piliszczuk, Executive VP of Global Strategy for Soitec. “Engineered substrates give semiconductor related start-ups a competitive edge in developing new high-performance, energy-efficient solutions.”

Pete Rodriguez, CEO of Silicon Catalyst said, “Soitec is creating technical advances that are enabling the next generation of products across many market segments. Their SOI technology is a key ingredient to meet the diverse challenges for breakthrough differentiated semiconductor products, combining ultra-low power with excellent analog/mixed-signal performance.”

Energy Harvesting with Renesas

And finally, jumping back a few months, at the end of 2018 Soitec announced that their SOI wafers are at the heart of a new Renesas SOTBTM energy harvesting chipset, opening a self-powered future for IoT devices. SOTB is how Renesas refers to its FD-SOI technology.

(Image courtesy: Renesas)

(BTW, here at ASN we’ve been covering the work that Renesas has quietly done on this technology since 2005 (!).  And we did a piece  about an EETimes Japan article back in 2015 that revealed the launching of the 65nm work. )

Soitec supports the Renesas SOTB chipset with a special version of its FD-SOI wafer product line. The new Renesas SOTB-based chipset overcomes the energy constraints of IoT devices and reduces the power consumption to approximately one-tenth that of the existing products in the market today. That makes the chipset perfectly suited for extreme low-power, maintenance-free and energy harvesting applications including wearable devices, smart home applications, smart watches, portable appliances, infrastructure monitoring systems, industrial, business, agricultural, healthcare, as well as health and fitness apparel, shoes, drones and more.

Renesas has developed its energy harvesting chip using its unique SOTB 65nm process technology that achieves both low active current of 20 μA/MHz and deep standby current of 150 nA. As a result, Renesas’ SOTB chipsets offer enhanced control of the transistor electrostatics and reductions in both the standby and active currents to levels never before achieved. Additionally, Renesas has successfully delivered the dopant-less channel to suppress Vth variability for the ultra-low voltage operation, and the ultra-low power back bias control to reduce the standby current at the same time.

“To spur innovations in IoT and consumer applications, we have integrated our exclusive energy-harvesting SOTB technologies into our Energy Harvest Controller,” said Mr. Toru Moriya, Vice President of Renesas’ Home Business Division, Industrial Solutions Business Unit. “We are confident that our SOTB technology built on Soitec’s ultrathin substrates can deliver unmatched capabilities for developing maintenance-free IoT devices that never require power supply or replacement, giving rise to a new IoT global market based on endpoint intelligence.”

(click to enlarge) Block diagram of the Renesas R7F0E Embedded Controller, their first device based on their SOTB (aka FD-SOI) technology. Target applications are battery-free connected IoT sensing devices with endpoint intelligence. (Image courtesy Renesas)

The new R7F0E Embedded Controller is the first device based on Renesas’ SOTB technology. Developers can now design applications that need no battery or recharging.  The R7F0E features: an Arm® Cortex® -M0+;  operating frequency up to 32 MHz, and up to 64 MHz in boost mode (that’s body bias in action!); memory of up to 1.5 MB flash, 256 KB SRAM; and active current consumption while operating at 3.0V of just 20 µA/MHz, and in deep standby of 150 nA with real-time clock source and reset manager. As of this writing, Renesas indicates it’s engaging select customers through July 2019, with mass production in 4Q19. Read more about the R7F0E on the Renesas website.

2019 Greetings for the Start of an Exciting Year in SOI

Welcome to our first post for 2019 here at the SOI Consortium’s Advanced Substrate News. First and foremost, may we wish you and yours a safe, happy, healthy and prosperous year.

It should be a good year across the SOI ecosystem, with new products, players, IP, technologies and tools — and high volumes.

What’s new? Let’s start with the people, as the Consortium welcomes new team members. Jon Cheek of NXP will join Carlos Mazure as Executive Co-Director. He’ll be replacing ST’s Giorgio Cesana in that role – and goodness knows those are some big shoes to fill. Giorgio has given of his time and expertise so tirelessly over many years. He’ll of course still be a key resource for the SOI ecosystem, and though we’ll miss him here at the Consortium, we know he’ll be doing great things in SOI at ST. So a heartfelt thanks to Giorgio Cesana from all of us.

Jon Cheek has a long history in engineering management at companies that have been leading users of SOI: AMD, Freescale and now NXP. As such, he understands what companies need to design great products, and how the Consortium can help further build, promote, connect and support the ecosystem. The Consortium team also welcomes Jean-Eric Michallet of Leti, who’ll bring deep bizdev expertise and a keen sense of what it takes to reach further into the ecosystem. (Astute long-time ASN readers might remember his post from five years ago about 3D monolithic integration – now dubbed “Cool Cube” by Leti.) And finally, look to hear more from and about the Consortium, as our team is rounded out with the addition of the comm & marketing savvy of Erin Berard of Soitec.

In addition to new team members, the Consortium is very pleased to welcome new member Applied Materials. Though new to the Consortium, AMAT has a long history in the heart of SOI ecosystem – in fact they’ve been working with SOI wafer-leader Soitec for over 25 years. AMAT ion implanters are a key enabler to what became and is Soitec’s industry-leading Smart CutTM SOI wafer manufacturing process. And of course AMAT equipment is used to make virtually every chip in the world, so their breadth of vision as a consortium member is clearly a fabulous addition.

2019 will also be marked by the expansion of the highly successful SOI Academy series, the first of which was held this past fall in Shanghai. We’ll keep you posted as these and other Consortium events are announced throughout the year. In fact, 2019 marks a decade of (excellent!) SOI Consortium events events around the world: our first symposium was held back in 2009. Kicking off this year, save April 9th on your calendar for our Annual SOI Silicon Valley Symposium. Then watch this page for more events across the globe.

What will the year bring? On the product side, RF-SOI for 5G is of course super hot. Last summer, a SemiconductorEngineering headline proclaimed RF-SOI Wars Begin. And what we heard at the International RF-SOI Workshop last fall in Shanghai (presentations here) certainly confirmed that in the coming year the race will continue unabated.

Part 3 in SemiconductorEngineering’s “Experts at the Table” series on FD-SOI featured James Lamb of Brewer Science, Giorgio Cesana of ST, Olivier Vatel of Screen, and Carlos Mazure of Soitec. (Image courtesy: SemiconductorEngineering.com)

And for FD-SOI, you might want to read the SE series published over the last six months. The latest, published a couple of weeks ago looks at FD-SOI at the Edge. There are some great insights from SOI Consortium members there. In terms of products, too, there’s lots of activity.

Last summer, Samsung indicated they’d taped out over 60 products since they first began offering 28FDS three years ago. It’s a trend they see accelerating.  Full production of 18FDS is slated for this fall.

And also last summer GlobalFoundries indicated they had over 50 client designs on 22FDX. “We’re only just beginning,” said GF CEO Tom Caulfield at the time. “We have found a way to separate ourselves from the pack by emphasizing our differentiated FD-SOI roadmap and client-focused offerings that are poised to enable connected intelligence. ”

For its part, ST, as we learned at the last SOI Consortium Japan Workshop, has been doing FD-SOI for five years now. And while we don’t have number, we learned that some of those products are now in their second and third generations, and that some big FD-SOI chips coming out this year with embedded memory and RF, with especially good traction in mmWave, automotive and IoT.

So while the outlook for the overall industry is anyone’s guess for the coming year, the outlook for chips built on SOI technologies is very good indeed.

FD-SOI Training: Over 220 Attend 1st SOI Academy in Shanghai

There were over 220 participants at the recent SOI Academy FD-SOI Training event organized in Shanghai. The event extended over two days, with the first day covering a basic introduction to the technology as well as the ecosystem worldwide and in China. The second day was hands-on professional training. Attendees got a comprehensive understanding of how to leverage the benefits and flexibility of FD-SOI design techniques for low-power chips including logic, mixed-signal/RF and analog blocks.

They had a great line-up of experts from whom to learn – check out the agenda here. There was also a follow-up press release (in Chinese) from SITRI here. There will be more of these SOI Academy events in cities across China in the year to come – we’ll keep you posted (and of course, keep checking back for news on the Consortium’s Events page).

SOI Academy ’18 keynotes by: Dr. Mark Ding, CEO, SITRI; Dr. Carlos Mazure, EVP Soitec and Chairman/Executive Director SOI Consortium. Dr. Julien Arcamone, EVP Leti. (Images courtesy: SITRI). Lower right: the hands-on FD-SOI training.

The two-day seminar and hands-on FD-SOI design training was (superbly!) co-organized by SITRI and Leti, with the support of the SOI Industry Consortium at the Jiading SIMIT campus outside of Shanghai.

Just to put this in perspective, SIMIT and SITRI are absolutely key players in China’s chip ecosystem. SIMIT is the Shanghai Institute of Microsystem and Information Technology, one of the most venerable institutes in the Chinese Academy of Science (CAS) and one of the world’s earliest pioneers in SOI. SITRI is the Shanghai Industrial μTechnology Research Institute, an international innovation center focused on globally accelerating innovation and commercialization of More-than-Moore for IoT. Both institutions are under the aegis of Dr. Xi Wang, Chairman of SITRI, Director General of SIMIT, Academician of CAS, and champion of all things SOI in China.

At this Shanghai event, the participants came from industry (including big companies, SMEs and startups) and technical institutions. In fact as well as attendees from Shanghai people voyaged from other cities such as Shenzhen and Chengdu.

The designers participating to the FD-SOI training day were all experienced in design and highly motivated in learning FD-SOI design, notes Carlos Mazure, Chairman & Executive Director of the SOI Industry Consortium, and Executive VP of Soitec. “This made it possible to dive into the specificities of FD-SOI,” he said, adding that, “The focus on RF was very timely.”

Day 1: Intro to FD-SOI

The first afternoon opening keynotes were made by SITRI CEO Dr. Mark Ding and Leti EVP Dr. Julien Arcamone. These were followed by overview talks by execs from Soitec, Verisilicon and GlobalFoundries.

After a lively networking break, three talks delved into FD-SOI technology. The first was by Professor Sorin Cristoloveanu, Laureate of the IEEE Andrew Grove Award and Director at the CNRS (the French National Center for Scientific Research – the largest governmental research organization in France and the largest fundamental science agency in Europe). He covered device physics and characterization techniques. This was followed by talks on the technology by Soitec Fellow Bich-Yen Nguygen, and by Dr. Christophe Tretz, IBM Sr. Engineer on product design methodology.

The day ended with a dinner, where Professor Cristoloveanu says enthusiastic technical discussions continued unabated (and continued even further in follow-up emails), lots of business cards were exchanged, and opportunities for further education were explored.

Day 2: Hands-on Training

The second day, designers got hands-on training from Leti experts using FD-SOI PDKs, first in the morning on digital, then in the afternoon on RF. Everyone loved the lively discussion and in-depth exchanges between the experts and the designers. They agreed that FD-SOI has important applications and differentiated competitive advantages for IoT, 5G, automotive, AI and other fields. At the end of the training, Leti and SITRI jointly issued SOI Academy certificates of completion to the designers.

Feedback from participants was very good. Some asked for further education and for hands-on testimonials from companies that are already designing and manufacturing products on FD-SOI.

“The participants were focused, motivated, involved, with good knowledge, which helped make the three hours of Digital training effective,” said Dr. Alexandre Valentian, Leti Sr. Expert, Digital Design. “The IT team was very helpful in setting up the training, the students accounts and the hardware infrastructure.”

“The training on Basics of FD-SOI RF circuit was a great success thanks to the efficiency of our Chinese partners and also thanks to the enthusiasm and the good level of our trainees. As senior Expert of CEA Leti I was really impressed by the professionalism of the organization team. For all these reasons, I’m very glad to have had the opportunity to contribute to the 2018 SOI Academy,” said Dr. Baudouin Martineau, Leti Sr. Expert, RFIC Design & Technologies.

“The professionalism, efficiency and enthusiasm of our Chinese partners and the level and technical relevance of all trainees made the training on Basics of FD-SOI RF circuit a great success and fruitful experience,” added Frédéric Hameau, Sr. RF Research Engineer, Leti Project Leader, Architecture, IC Design & Embedded Software Division, RF Architectures and ICs Laboratory. “It was a pleasure to get the opportunity to be part of this first edition of SOI academy 2018.”

The organizers would like to thank the sponsors, including: the SOI Consortium and its members Soitec, VeriSilicon, GlobalFoundries, Simgui and Cadence, as well as Mentor, ProPlus and other companies and institutions in China and worldwide. Dr. Mazure notes that special recognition must go to Dr. Julien Arcamone, EVP, Leti-CEA and to Qing Wang-Bousquet, SITRI representative, for the perfect and smooth organization, and to the Leti instructors, who are international experts and highly committed.

“As one of the main initiators and organizers of the 2018 SOI Academy, I wanted to personally thank all of you for your respective contribution to this first edition of the SOI Academy,” concludes Dr. Arcamone. “Undoubtedly, it was a great success, very well organized and fluid and we can be proud of that.”

EuroSOI-ULIS (April 2019, Grenoble) + Free FD-SOI RF Technology Workshop for 5G

If you’ve never been, you should put it on your list. EuroSOI is one of those seminal conferences where you get a front-row seat to emerging technologies. It provides an interactive forum for scientists and engineers working in the field of new materials and advanced nanoscale devices. In fact, some of the leading technologies enabled by SOI that are now in the mainstream got their start at this conference. Within a few years of being presented here, the best work continues to evolve and star in the “big” conferences like IEDM and VLSI.

The list of luminaries on the steering and technical committees is a veritable who’s who of the SOI research ecosystem, including two winners of the IEEE Andrew Grove Award: Technical Chair Jean-Pierre Colinge and Sorin Cristoloveanu. So, if you want to get in on the ground floor of next-gen SOI, or just get a look at the early stages of the pipeline, this is a great place to do it.

One of the key objectives is to promote collaboration and partnership between players in academia, research and industry. As such it provides opportunities for cross-fertilization across materials, devices and design. The networking is excellent, and the gala dinner is always an affair to remember.

This year, papers in the following areas have been solicited:

  • Advanced SOI materials and wafers. Physical mechanisms and innovative SOI-like devices
  • New channel materials for CMOS: strained Si, strained SOI, SiGe, GeOI, III-V and high mobility materials on insulator; carbon nanotubes; graphene and other two-dimensional materials.
  • Properties of ultra-thin films and buried oxides, defects, interface quality. Thin gate dielectrics: high-κ materials for switches and memory.
  • Nanometer scale devices: technology, characterization techniques and evaluation metrics for high performance, low power, low standby power, high frequency and memory applications.
  • Alternative transistor architectures including FDSOI, DGSOI, FinFET, MuGFET, vertical MOSFET, Nanowires, FeFET and Tunnel FET, MEMS/NEMS, Beyond-CMOS nanoelectronic devices.
  • New functionalities in silicon-compatible nanostructures and innovative devices representing the More than Moore domain, nanoelectronic sensors, biosensor devices, energy harvesting devices, RF devices, imagers, etc.
  • CMOS scaling perspectives; device/circuit level performance evaluation; switches and memory scaling. Three-dimensional integration of devices and circuits, heterogeneous integration.
  • Transport phenomena, compact modeling, device simulation, front- and back-end process simulation.
  • Advanced test structures and characterization techniques, parameter extraction, reliability and variability assessment techniques for new materials and novel devices.
  • Emerging memory devices.

Accepted papers appear in the conference proceedings in the IEEE Xplore® digital library. The authors of the best papers are invited to submit a longer version for publication in a special issue of Solid-State Electronics. A best paper award will be attributed to the best paper by the SiNANO institute.

EuroSOI-ULIS kicks off a full week of activities in Grenoble. The day after the conference, Incize and Soitec are sponsoring an excellent, free workshop on FD-SOI RF technologies for 5G: materials, devices, circuits and performance. The’ve got a terrific line-up of presentations planned.

And towards the end of the week, there are other important satellite events. The 1st open IRDS International Roadmap for Devices and Systems European Conference (April 4th, 2019) is jointly organized by the USA, Japan and EU, and sponsored by the IEEE and SiNANO Institute. Then the week finishes out with the IEEE ICRC International Conference on Rebooting Computing (April 5th, 2019).

Grenoble the first week of April 2019 is clearly the place to be.

Now, We Ramp! Panelists at Japan Workshop See Good Opps for FD-SOI, RF-SOI

Lots of great information came out of the two days of workshops in Japan recently organized by the SOI Consortium. Some of the presentations are now posted on the consortium website (get them here).

The first day (held in Yokohama and sponsored by Silvaco) focused on FD-SOI and RF-SOI design. The second day (held at U. Tokyo) focused on More than Moore (especially silicon photonics, MEMS & sensors), and the SOI manufacturing ecosystem.

The 1st day panel discussion was so interesting we’ll give it a post of its own, then follow up with round-ups of the presentations from both days.

And now to ramp!

The morning panel discussion on end-user deployment for FD and RF-SOI was moderated by SOI Consortium Executive Director Giorgio Cesana. GF’s CTO Subi Kengeri led off saying that that 2017 had been the year of FD-SOI adoption. Samsung Director Adam Lee noted that in the beginning nobody believed it would get traction, but now everybody does, and Samsung is commercializing it: chips coming out this year will ramp in volume in 2019.

Panel on FD-SOI and RF-SOI end-user deployment, SOI Workshop Japan, 2018. Giorgio Cesana, SOI Consortium Executive Director, Moderator; John Carey, ST Director; Adam Lee, Samsung Director; Subramani Kengeri, GF CTO; Wayne Dai, VeriSilicon CEO; Mostafa Emam, Incize CEO. (Courtesy: SOI Consortium)

VeriSilicon CEO Wayne Dai said he sees great potential in IoT, where the volumes are high but fragmented. In IoT, he said, you need RF, but you really only need very high performance about 20% of the time, which is a perfect fit for FD-SOI.

ST Director John Carey noted that ST’s been using FD-SOI since 2014. They’ve fabbed products for cryptocurrency and infrastructure. Now in their second and third generations of designing with it, they’ve got some big FD-SOI chips coming out next year with embedded memory and RF. He sees it being particularly successful in mmWave, automotive and IoT.

The conversation then shifted to RF-SOI. Mostofa Emam, CEO of Incize, explained that since RF-SOI is already in every smart phone, it’s in a different situation from FD-SOI. The emphasis here is now on adding more blocks. “RF is an art,” he said. “It takes an artist. You need talented artists and tools.” One of the biggest challenges for fabs that are newcomers is models – not just at the transistor level, but also at the substrate level. The big players have addressed this, but Incize is working to support more foundries with new, innovative approaches, and helping them develop robust PDKs. The industry needs more good RF designers as well as better RF design flow, he concluded.

Coming back to FD-SOI, Cesana asked about non-volatile memory (NVM). Samsung’s Lee said they’ve already got NVM options including eMRAM for 28nm, and customers are now requesting eMRAM PDKs for the next node (18FDS). ST’s Kengeri added eNVM is important for FD-SOI, especially since flash is not scaling. While there are lots of options, MRAM gives you all the value, and in FD-SOI it only adds three more mask steps, so cost savings are maintained.

With respect to local computing for AI with FD-SOI, everyone agreed on the importance of the edge. In addition to RF, FD-SOI gives you density even at 28nm, explained Carey. You can manually control power with back biasing, so you get something very flexible, especially for NB-IoT applications where the battery will have to last for 10 years. In fact Kengeri sees FD-SOI as enabling fog/edge computing.

5G – What’s First?

The next question was about 5G: which applications would we be seeing first, and how does FD-SOI help? Lee said Samsung’s seeing it for apps up to 10GHz as well as mmWave. Customers are telling them they want FD-SOI for technical reasons.

Kengeri expanded on that point, saying it comes down to fundamental physics: gate resistance, capacitance, mismatch. FD-SOI has lower Vmin and better Fmax compared to FinFETs, and that’s what tier-one players want.

Carey brought it back to RF-SOI (noting that ST’s introducing a 45nm version), which supports a large number of elements and increased complexity with smaller power budgets. Emam then asked the foundry guys about mmWave. Substrates won’t be the bottleneck he said, so what’s the FD-SOI/mmWave roadmap? Kengeri responded that GF’s ready. Lee said Samsung is also ready, and you’d see it next year on handsets. Samsung has engaged with customers on 30GHz for the middle of next year, he added: it’s qualified. Carey said ST sees it first in consumer premises equipment that’s connected by satellite.

The right enabler

Cesana then asked about image sensor processors (ISPs), noting that analyst Handel Jones has said this is a big opportunity for FD-SOI. You can do 3D integration with sensors, but heat makes noise, so you need technology that decreases heat production and doesn’t give you hotspots (which would be visible in the image). Kengeri pointed to challenges in power density, thermal envelopes and the RTS (random telegraph noise signal). Although there are a lot of options, FD-SOI plays well for thermals and noise, so GF sees a good opportunity here. Dai added that the industry needs volume applications for FD-SOI, and ISPs need to bring more logic closer to the camera. And he concurred that you need FD-SOI for the thermals: it’s very important.

In closing, Dai noted that as a design house, “We walk on two legs: FinFETs and FD-SOI.” 28, 22, 18 and 12nm FD-SOI all enable differentiation. In particular, you need something between 20nm and 7nm: FD-SOI is here. Asked about Japan in particular, Dai said beyond automotive he saw lots of potential in ULP for AVR. Kengeri added that for any applications besides performance-at-any-cost, FD-SOI is the right enabler.