Tag Archive sub Vt

IEEE SOI-3D-Substhreshold (S3S) Conference Issues Call for Papers

The IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (IEEE S3S) has issued the 2015 Call for Papers.

Now in its 3rd year as a combined event, the 2015 IEEE S3S Conference will take place in Sonoma Valley, CA, just north of San Francisco, October 5-8. This industry-wide event will gather together widely known experts, contributed papers and invited talks on three main topics: SOI technology, subthreshold architectures with associated designs and 3D integration. With its 40-year history, the SOI segment continues as world’s premier conference to present and discuss state of the art SOI technical papers.

The 2014 edition was a great success (click here to read about it).  The deadline for submissions for the 2015 conference is April 15, 2015 (click here for complete submission information).

SOI-3D-SubVt (S3S): three central technologies for tomorrow’s mainstream applications

ST further accelerates its FD-SOI ROs* by 2ps/stage, and reduces SRAM’s VMIN by an extra 70mV. IBM shows an apple-to-apple comparison of 10nm FinFETs on Bulk and SOI. AIST improves the energy efficiency of its FPGA by more than 10X and Nikon shows 2 wafers can be bonded with an overlay accuracy better than 250nm.

We learned all this and much more during the very successful 2014 IEEE S3S Conference.

The conference’s 40th edition (first created as the IEEE SOS technology workshop in 1975) was held in San Francisco Oct. 6-9. Dedicated to central technologies for tomorrow’s mainstream applications, the event boasted nearly 80 papers presented over 3 days covering conception, design, simulation, process and characterization of devices and circuits.

 S3S14banner

 

Many of the talks we heard made it very clear that the Internet-of-Things will be the next big market growth segment. It will be enabled by extremely energy-efficient and low-cost technologies in the field of RF-communications, sensors and both embedded and cloud computing. The program of the conference was very well designed to tackle these topics, starting with the short courses on Energy Efficiency and Monolithic 3D, an RF fundamentals & applications class, a MEMS hot topic session and a strong focus on ultra-low power throughout the SubVt sessions.

(Photo credit: Justin Lloyd)

S3S Conference Poster & reception session. (Photo credit: Justin Lloyd)

 The interest of the participants could be seen through an increase in Short Course and Fundamentals Class participation (+20%) compared to last year.

 The companies working in the field of RF communications and mobile chips were well represented, including attendees and presenters coming from Broadcom, MediaTek, Murata, Newlans, Qualcomm, RFMD, Skyworks and TowerJazz.

 

Sub-Threshold Microelectronics

The SubVT portion of the conference featured an extremely strong suite of papers on advancements in subthreshold circuit design including ultra-low-voltage microprocessors, FPGAs, and analog circuits. Additionally, there were sessions on technologies which enable very low voltage computation, such as radiation testing during subthreshold operation, and efficient energy-harvesting devices to allow indefinite operation of IoT systems. A number of talks explored the future of ultra low voltage computing, presenting results from emerging technologies such as Spin Torque Transfer devices and TFETs.

3D Integration

The 3D integration track keeps growing in the conference and is strongly focused on monolithic 3D. A dedicated full day short course was offered again this year, as well as two joint sessions featuring several papers on process integration, design, precision alignment bonders and more. Progress is being made and a lot of interest in this technology is being generated (See the EE Times article).

Key Fully-Depleted SOI Technical results

Planar Fully-Depleted SOI technologies were well represented again this year, in both SOI and Sub-Vt parallel sessions. A full session was also dedicated to FinFETs.

STMicroelectronics and CEA-Leti gave us a wealth of information on:

  • From "Design Strategy for Energy Efficient SOCs in UTBB FD-SOI Technology" in the S3S '14 "Energy Efficiency" short course by P. Flatresse (Source: STMicroelectronics)

    From “Design Strategy for Energy Efficient SOCs in UTBB FD-SOI Technology” in the S3S ’14 “Energy Efficiency” short course by P. Flatresse (Source: STMicroelectronics)

    How to improve your circuit’s efficiency by co-optimizing Vdd, poly-bias and back-gate voltage simultaneously during the circuit design. Picking the correct optimization vector enables you to gain more than 2X in speed or up to 5X in power compared to the non-optimized circuit. (P. Flatresse, “Design Strategy for Energy Efficient SOCs in UTBB FD-SOI Technology” in the “Energy Efficiency” short course). In the same presentation we saw how going to a single-well configuration can help further reduce SRAM’s VMin by 70mV (see graph to the right).

  •  How to use FMAX tracking to maintain optimal Vdd, VBB values during operation. This shows how you can take advantage of both Vdd and VBB dynamic modulation to maintain your circuit’s best performance when external conditions (e.g. temperature, supply voltage…) vary. (E. Beigné, “FDSOI Circuit Design for a Better Energy Efficiency”).

The latest updates on 14nm technology, including an additional 2ps/stage RO delay reduction since the 2014 VLSI results shown last June. This means ROs running faster than 8ps/stage at 10nA/stage of static leakage. The key elements for the 10nm node (sSOI, thinner BOX, replacement gate, next gen. ID-RSD) where also discussed. (M. Haond, “14nm UTBB FD-SOI Technology”).

In the past year we witnessed the foundry announcements for FD-SOI technology offering. Global Foundries very clearly re-stated their interest in the FD-SOI technology, claiming that 28FD-SOI is a good technology for cost sensitive mobile applications, with the cost of 28LP and the performance of 28HPP. However, GF favors a flavor of FD-SOI technology they call Advanced ET-SOI, with similar performance to 20LPM at a reduced cost.

More than An Order of Magnitude Energy Improvement of

From S3S 2014 Best Paper, “More than An Order of Magnitude Energy Improvement of FPGA by Combining 0.4V Operation and Multi-Vt Optimization of 20k Body Bias Domains” (AIST)

The IEEE S3S Conference Best Paper Award went to Hanpei Koike and co-authors from the National Institute of AIST, for their paper entitled “More than An Order of Magnitude Energy Improvement of FPGA by Combining 0.4V Operation and Multi-Vt Optimization of 20k Body Bias Domains,” presented in the SubVT part of the conference. In this work, an FPGA was fabricated in the AIST SOTB (Si On Thin BOX — which is another name for FD-SOI) process, and demonstrated successful operation down to voltages at and below the minimum energy point of the circuit. A 13x reduction in Power-Delay-Product over conventional 1.2V operation was achieved through a combination of low voltage operation and flexible body-biasing, enabled by the very thin BOX.

On the FinFET side, T.B. Hook (IBM) presented a direct comparison of “SOI FinFET versus Bulk FinFET for 10nm and below”, based on silicon data. This is a very unique work in the sense that both technologies are being developed and optimized by the same teams, in the same fab, with the same ground rules, which enables a real apple-to-apple comparison. SOI comes out a better technology in terms of Fin height control (better performance and ION variability), VT mismatch (lower VMin), output conductance (better analog and low voltage perf.) and reliability. Though external stressors are expected to be more efficient in Bulk FinFETs, mobility measurements are only 10% lower for SOI PFETs and are actually 40% higher for SOI NFETs, because of the absence of doping. The devices’ thermal resistance is higher on SOI, though bulk FinFETs are not as immune to self-heating as planar bulk. Both technologies are still competitive down to the 10nm node, but looking forward, bulk’s advantages will be rendered moot by the introduction of high mobility materials and dimensions shrinking, while SOI advantages will keep getting larger.

Experimental SOI vs. Bulk FinFET comparison showing 50% higher VT variability on bulk (grey dots on top graph) as well as mobility difference (lower graphs).

Experimental SOI vs. Bulk FinFET comparison showing 50% higher VT variability on bulk (grey dots on top graph) as well as mobility difference (lower graphs).

FinFET_SOI_IBM_S3S14_Mobility_1

Join the conference in 2015!

Next year, the S3S Conference will be held October 5-8, at the DoubleTree by Hilton Sonoma Wine Country Hotel, Rohnert Park, California.

The organizing committee is looking forward to seeing you there!

~~~

 

Steven A. Vitale is an Assistant Group Leader in the Quantum Information and Integrated Nanosystems Group at MIT Lincoln Laboratory.  He received his B.S. in Chemical Engineering from Johns Hopkins University and Ph.D. in Chemical Engineering from MIT.  Steven’s current research focuses on developing a fully-depleted silicon-on-insulator (FDSOI) ultra-low-power microelectronics technology for energy-starved systems such as space-based systems and implantable biomedical devices.  Prior to joining MIT-LL, Steven was a member of the Silicon Technology Development group at Texas Instruments where he developed advanced gate etch processes. He has published 26 refereed journal articles and holds 5 patents related to semiconductor processing. From 2011 to 2012 Steven was the General Chair of the IEEE Subthreshold Microelectronics Conference, and is on the Executive Committees of the AVS Plasma Science and Technology Division, the AVS Electronic Materials and Processing Division, and the IEEE S3S Conference.

Frederic Allibert received his MS degree from the National Institute for Applied Sciences (INSA, Lyon, France) in 1997 and his PhD from Grenoble Polytechnic’s Institute (INPG) in 2003, focusing on the electrical characterization of Unibond wafers and the study of advanced device architectures such as planar double-gate and 4-gate transistors.  He was a visiting scientist at KAIST (Taejon, Korea) in 1998 and joined Soitec in 1999.  As an R&D scientist, he implemented SOI-specific electrical measurement techniques (for thin films, multi-layers, high resistivity) and supported the development of products and technologies targeting various applications, including FD-SOI, RF, imagers, and high-mobility materials.  As Soitec’s assignee at the Albany Nanotech Center since 2011, his focus is on substrate technologies for advanced nodes.  He has authored or co-authored over 50 papers and holds over 10 patents.

 

 

*RO = ring oscillator

 

 

Welcome to IEEE S3S – the World’s Leading Conference for SOI, 3DI and Sub Vt (SF, 6-9 Oct)

S3Sheader

(For best rates, register by September 18th.)

The 2014 IEEE SOI-3DI–Subthreshold (S3S) Microelectronics Technology Unified Conference will take place from Monday October 6 through Thursday October 8 in San Francisco.

Photo Credit: Catherine Allibert

Photo Credit: Catherine Allibert

Last year we entered into a new era as the IEEE S3S Conference. The transition from the IEEE International SOI Conference to the IEEE S3S conference was successful by any measurement. The first year of the new conference leading-edge experts from 3D Integration, Sub-threshold Microelectronics and SOI fields gathered and we established a world class international venue to present, learn and debate about these exciting topics. The overall participation at the first year of the new conference grew by over 50%, and the overall quality and quantity of the technical content grew even more.

This year we are looking forward to continuing to enhance the content of the 2014 S3S Conference.

 

Short courses: Monolithic 3D & Power-Efficient Chip Tech

On Monday, Oct. 6 we will feature two Short Courses that will run in parallel. Short courses are an educational venue where newcomers can gain overview and generalists can learn more details about new and timely topics.

The short course on Monolithic 3D will be a full day deep dive into the topic of three-dimensional integration wherein the vertical connectivity is compatible with the horizontal connectivity (10,000x better than TSV). Already there are extremely successful examples of monolithic 3D Flash Memory. Looking beyond this initial application, we will explore the application of monolithic 3D to alternate memories like RRAM, CMOS systems with silicon and other channel materials like III V. In addition, a significant portion of the short course will be dedicated to the exciting opportunity of Monolithic 3D in the context of CMOS Logic.

The other short course we will offer this year is entitled Power Efficient Chip Technology. This short course will address several key aspects of power-efficiency including low power transistors and circuits. The course will also review in detail the impact of design and architecture on the energy-efficiency of systems. The short course chairs as well as the instructors are world class leading experts from the most prestigious industry and academic institutions.

 

Conference program

The regular conference sessions will start on Tuesday Oct. 7 with the plenary session, which will feature presentations from Wall Street (Morgan Stanley Investment Banking), Microsoft and MediaTek. After the plenary session we will hear invited talks and this year’s selection of outstanding papers from international researchers from top companies and universities. The most up to date results will be shared. Audience questions and one on one interaction with presenters is encouraged.

Back by popular demand we will have 2 Hot Topics Sessions this year. The first Hot Topic Session is scheduled for Tuesday Oct. 7th and will feature exciting 3DI topics. The other Hot Topics session is scheduled for Thursday Oct 9 and will showcase new and exciting work in the area of MEMS.

Our unique poster session and reception format will have a short presentation by the authors followed by one on one interaction to review details of the poster with the audience, in a friendly atmosphere, around a drink. Last year we had regular posters as well as several invited posters with very high quality content and we anticipate this year’s poster session to be even better than last years.

We are offering a choice of two different fundamentals classes on Wednesday afternoon. One of the Fundamentals classes will focus on Robust Design of Subthreshold Digital and Mixed Circuits, with tutorials by the worlds leading experts in this field. The SOI fundamentals course is focused on RF SOI Technology Fundamentals and Applications.

Our technical content is detailed on our program webpage.

 

Panel discussions, cookout & more

Keeping in line with tradition, on Wednesday night we will have a hearty cook out with delicious food and drink followed by the Panel Session entitled Cost and Benefit of Scaling Beyond 14nm. Panel speakers from financial, semiconductor equipment, technology, and academic research institutions will gather along with the audience to debate this timely topic. Although Thursday is the last day of the conference we will have stimulating presentations on novel devices, energy harvesting, radiation effects along with the MEMS Hot Topic Session and Late News Session. As always we will finish the conference with the award ceremony for the best papers.

SFstreetsignOur conference has a long tradition of attracting presenters and audience members from the most prestigious research, technology and academic institutions from around the world. There are many social events at the S3S Conference as well as quiet time where ideas are discussed and challenged off line and people from various fields can learn more about other fields of interest from leading experts.

The conference also offers many opportunities for networking with people inside and also outside ones area. The venue this year is San Francisco. We chose this location to attract the regions leading experts from Academia and Industry. If you have free time we encourage you to explore San Francisco which is famous for a multitude of cultural and culinary opportunities.

Please take a moment to learn more about our conference by browsing our website or downloading our advance program.

To take full advantage of this outstanding event, register before September 18!

Special hotel rates are also available from the dedicated hotel registration page.

The committee and I look forward to seeing you in San Fransisco.

– Bruce Doris, S3S General Chair

 Photo Credit: Catherine Allibert

Photo Credit: Catherine Allibert

2014 IEEE S3S (SOI/3D/SubVt) – Oct. SF – top speakers lined up; paper submissions til 26 May

IEEE_EDS_header

IEEE International

SOI-3D-Subthreshold Microelectronics Technology Unified Conference

6-9 October 2014

Westin San Francisco Airport, Millbrae, CA

The IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (IEEE S3S) is welcoming papers until May 26, 2014 (click here for submission guidelines).

 

IMG_1060_revu2

Photo Credit: Catherine Allibert

Last year, the first edition of the IEEE S3S conference, founded upon the co-location of the IEEE International SOI Conference and the IEEE Subthreshold Microelectronics Conference was a great success with a 50% increase in attendance.

The conference will, this year again, hold two parallel sessions related to SOI and Subthreshold Microelectronics supplemented by a common session on 3D integration.

The 2014 edition of the conference already promises a rich content of high-level presentations.

 

 

Program

The plenary session will host Alice Wang (MediaTek), Bruno Terkaly (Microsoft) and Mark Edelstone (Morgan Stanley Investment Banking). They will give us a broad overview of the new markets and opportunities for the upcoming years.

Invited speakers from major industries (like GlobalFoundries, SEH, ST, IBM, Rambus) and from many prestigious academic institutions will share with us their views of the ongoing technical challenges related to SOI, Sub-VT and 3D integration. The complete list of invited speakers can be seen on the program outline page of the conference website.

On the same webpage, more information is given about the various dedicated sessions.

There will be two short courses again this year: One on Power Efficiency, and the other on Monolithic 3D. There will also be a class on RF-SOI Technology Fundamentals and Applications as well as a fundamentals class on Robust Subthreshold Ultra-low-voltage Design of Digital and Analog/RF Circuits.

The Hot Topics session will, this year, be about MEMS. During the Rump session we will debate about the Cost and Benefit of Scaling Beyond 14nm.

 

Scope of the conference

The Committee will review papers submitted by May 26 in the three following focus areas of the conference:

  • Silicon On Insulator (SOI): Ever increasing demand and advances in SOI and related technologies make it essential to meet and discuss new gains and accomplishments in the field. For over 35 years our conference has been the premier meeting of engineers and scientists dedicated to current trends in Silicon-On-Insulator technology. Previously unpublished papers are solicited in all areas of SOI technology and related devices, circuits and applications.
  • Subthreshold Microelectronics: Ultra-low-power microelectronics will expand the technological capability of handheld and wireless devices by dramatically improving battery life and portability. Ubiquitous sensor networks, RFID tags, implanted medical devices, portable biosensors, handheld devices, and space-based applications are among those that would benefit from extremely low power circuits. One of the most promising methods of achieving ultra-low-power microelectronics is to reduce the operating voltage to below the transistor threshold voltage, which can result in energy savings of more than 90% compared to conventional low-power microelectronics. Papers describing original research and concepts in any subject of ultra-low-power microelectronics will be considered.
  • 3D Integration, including monolithic 3D IC or sequential 3D IC, allows us to scale Integrated Circuits “orthogonally” in addition to classical 2D device and interconnect scaling. This session will address the unique features of such stacking with special emphasis on wafer level bonding as a reliable and cost effective method, similar to the creation of SOI wafers. We will cover fabrication techniques, bonding methods as well as design and test methodologies. Novel inter-strata interconnect schemes will also be discussed. Previously unpublished papers are solicited in all of the above areas related to 3D implementation.

Students are encouraged to submit papers and compete for the Best Student paper awards, sponsored by Qualcomm. Details on paper submission and awards are given on the call for paper webpage.

 

LocationIMG_0937-Revue

The 2014 edition of the conference will be very conveniently located in Millbrae, California, close to the San Francisco airport. The BART and Caltrain stations, within walking distance, give you access to San Francisco to the north and the Silicon Valley to the south. Conference attendants will be able to easily combine their trips with visiting colleagues in the Bay Area or touring the Golden City.

Important dates:

Paper submission deadline: 26 May 2014

Notification of acceptance: 23 June 2014

Short course date: 6 October 2014

Conference date: 6 – 9 October 2014

More details are available on the S3S website.

IMG_1037_revu2

Photo Credit: Catherine Allibert

 

The IEEE S3S Conference Delivered Impressive Technical Content

Layout 1

EDS Logo PMS3015_revu

BayMonterey

A view of the Bay from Cannery row, Monterey, CA.

The new IEEE S3S conference promised rich content, as it merged both The IEEE International SOI Conference and the IEEE Subthreshold Microelectronics Conference, completed by an additional track on 3D Integration.

The result was an excellent conference, with outstanding presentations from key players in each of the three topics covered. This quality was reflected in the increased attendance: almost 50% more than at the SOI conference last year.

The new triptych at the heart of the conference was well illustrated by the plenary session, which combined a presentation on ST’s FD-SOI technology by Laurent LePailleur (STMicroelectronics), one on Low Power Design, by Bob Bordersen (UC Berkeley), and one on monolithic integration by Zvi Or-Bach (MonolithIC 3D™).

Professor Bordersen’s presentation dealt with power efficiency, explaining how developing dedicated units with a high level of parallelism and a low frequency can boost the number of operations performed for 1nJ of expanded power. He illustrated his point by showing how an 802.11a Dedicated Design for Computational Photography can reach 50,000 OP/nJ while an advanced quadcore microprocessor will not even reach 1 OP/nJ. Such is the price of flexibility….but the speaker claims this can be overcome by using reconfigurable interconnects.

IBM_GF_SOIFinFET

Chart from A. Paul (GF) showing benefits of Fin width scaling

The “Best SOI Paper” award went to a GlobalFoundries/IBM paper entitled “FinWidth Scaling for Improved Short Channel Control and Performance in Aggressively Scaled Channel Length SOI FinFETs.” The presenter, Abhijeet Paul (GF) explained how narrower Fins can be used to improve short channel effects while actually giving more effective current without degrading the on-resistance. (See the DIBL and SS improvement on the chart.)

 

 

The”Best SOI Student Paper” award went to H. Niebojewski for a detailed theoretical investigation of the technical requirements enabling introduction of self-aligned contacts at the 10nm node without additional circuit delay. This work by ST, CEA-Leti and IEMN was presented during the extensive session on planar FD-SOI that started with Laurent Grenouillet’s (CEA-Leti) invited talk. Laurent first updated us on 14nm FD-SOI performance: Impressive static performance has been reported at 0.9V as well as ROs running at 11.5ps/stage at the very low IOFF=5nA/µm (0.9V & FO3). Then he presented potential boosters to reach the 10nm node targets (+20% speed or -25% power @ same speed). Those boosters include BOX thinning, possibly combined with dual STI integration, to improve electrostatics and take full advantage of back-biasing as well as strain introduction in the N channel (in-plane stressors or sSOI) combined with P-channel germanidation.

sSOI (strained SOI) was also the topic of Ali Khakifirooz’ (IBM) late news paper, who showed how this material enables more than 20% drive current enhancement in FinFETs scaled at a gate pitch of 64nm (at this pitch, conventional stressors usually become mostly inefficient).

An impressive hot topics session was dedicated to RF CMOS.

J. Young (Skyworks) explained the power management challenges as data rates increase (5x/3 years). Peak power to average power ratio has moved from 2:1 to 7:1 while going from 3G to LTE. Advanced power management techniques such as Envelope Tracking can be used to boost your system’s efficiency from 31% to 41% when transferring data (compared to Average Power Tracking techniques), thus saving battery life.

Paul Hurwitz (TowerJazz) showed how SOI has become the dominant RF switch technology, and is still on the rise, with predictions of close to 70% of market share in 2014.

The conference also had a strong educational track this year, with 2 short courses (SOI and 3DI) and 2 fundamentals classes (SOI and Sub-Vt).

The SOI short course was actually not SOI-restricted, since it was addressing the challenges of designing for a new device technology. P. Flatresse (ST) and T. Bednar (IBM) covered the SOI technology parts (FD-SOI and SOI FinFETs for ASICs respectively), while D. Somasekhar (Intel) gave concrete examples of how the change of N/P performance balance, the improvement of gate control or the introduction of Mandrels has affected design. Other aspects were also covered: Design for Manufacturing (PDF), IP librairies (ARM) and design tools (Cadence) for the 14nm node, to make this short course very comprehensive.

The rump session hosted a friendly discussion about expectations for the 7nm node. It was argued that future scaling could come from 3DI, either through the use of monolithic 3D integration or stacking and TSVs because traditional scaling is facing too many challenges. Of course, 3DI may not yet be economically viable for most applications, and since it is compatible with traditional scaling, we might well see both developed in parallel.

IBM3DI_S3S13ConfShortCourse

Snapshot from Dr M. Farooq’s (IBM) presentation (3DI shortcourse)

3D integration was also the topic of another joint hot topics session covering various fields of investigation, like co-integration of InGaAs and Ge devices (AIST), or 3D cache architectures (CEA-Leti & List). A nice example was given by P. Batra (IBM) of two stacked eDRAM cache cores, where the 16Mb cache on one layer is controlled by the BIST on the other layer and vice-versa with the same efficiency as in the 2D operation.

 

The first edition of this new conference was very successful, with a good attendance, two sessions running in parallel, extensive educational tracks, a large poster session and a lot of very high quality content. The two hot topics sessions generated a lot of enthusiasm in the audience.

Similar sessions will be repeated at the conference’s next edition, in the San Francisco area. It promises to offer outstanding content once more, and we already urge you to plan to submit papers and attend it.

SOI – 3D Integration – Subthreshold Microelectronics: Register now for the IEEE S3S!

IEEE S3S conference

(Photo credit: 2013 Hyatt Regency Monterey Hotel and Spa)

(Photo credit: 2013 Hyatt Regency Monterey Hotel and Spa)

Last May, we already let you know about the IEEE S3S conference, founded upon the co-location of The IEEE International SOI Conference and the IEEE Subthreshold Microelectronics Conference, completed by an additional track on 3D Integration.

Today, we would like let you know that the advance program is available, and to attract your attention on the incredibly rich content proposed within and around this conference.

The conference revolves around an appropriate mix of high level contributed talks from leading industries and research groups, and invited talks from world-renowned experts.

The complete list of posters and presentations can be seen in the technical program.

This year some additional features have been added, including a joint session about RF CMOS as well as one about 3D integration.  Check the list of participants on those links, and you will see that major players in the field are joining us!

Our usual rump session will let us debate what the 7 nm node and beyond will look like, based on the vision presented by our high profile panelists.

(Photo Credit: Monterey County Convention and Visitors Bureau)

(Photo Credit: Monterey County Convention and Visitors Bureau)

There will be 2 short courses this year, and 2 fundamentals classes.  Those educational tracks are available to you even if you do not register for the full conference.

On Monday October 7th, you can attend the short course on “14nm Node Design and Methodology for Migration to a New Transistor Technology“, that covers specificities of 14nm design stemming from the migration of classical bulk to bulk to FinFET/FDSOI technologies..

Alternatively, on the same day you can attend the “3D IC Technology” short course, introducing the fundamentals of 3D integrated circuit technology, system design for 3D, and stress effects due to the Through Silicon Via (TSV).

On the afternoon of Wednesday October 9th, you can opt to follow the Sub Vt Fundamentals Class on “Robust subthreshold ultra-low-voltage design of digital and analog/RF circuits” or the SOI Fundamentals Class “Beyond SOI CMOS: Devices, Circuits, and Materials “.

You could also prefer to take the opportunity to visit the Monterey area.

Cannery Row at twilight

(Photo credit: Monterey County Convention and Visitors Bureau)

The conference has always encouraged friendly interactions between the participants, and because it covers the complete chain, from materials to circuits, you are sure to meet someone from a field of interest.  The usual social events, welcome reception, banquet and cookout dinner, will provide you with more openings for networking, contemplating new project opportunities or getting into technical discussions that could shed new light on your research.

To take full advantage of this outstanding event, register now!

Please visit our Hotel Registration Information page to benefit from our special discounted room rates at the conference venue, The Hyatt Regency Monterey Hotel and Spa.

The latest conference updates are available on the S3S website (http://S3Sconference.org).