Tag Archive wafers

ByAdele Hars

SOI Consortium at Key China Events in May: World Semiconductor Congress (Nanjing) and SOI Academy/FD-SOI Training (Shanghai)

Join us! In partnership with our members, the SOI Consortium is co-organizing and participating in two key SOI events coming up in China over the next few weeks. On May 18th, we’ve put together an SOI Forum at the World Semiconductor Congress (WCS) in Nanjing. And on May 23rd & 24th, we’ve teamed up with our members SIMIT, Sitri and Leti for another in our series of SOI Academies, including an FD-SOI Training Day. (The last one this past winter was a terrific success – read about that here if you missed our coverage at the time.)

QR code for WCS, Nanjing ’19

At WCS, the SOI Forum (sub-forum #8) is part of the afternoon Innovation Summit. We’ll cover the broader SOI ecosystem, including both RF-SOI and FD-SOI – from wafers to design through manufacturing. Presentations will be given by members of the SOI Consortium team, and by leaders from our membership, including Simgui, NXP, Incize, ST, IBM, Cadence and Xpeedic. Click here or scan the QR code for the full program and registration information.

Also at WCS, SOI Consortium member VeriSilicon will be participating in a morning session on AI and IoT Wireless Communications (sub-forum #4). They’ll be giving a presentation on their low-power Bluetooth design platform for GlobalFoundries 22FDX, and their CEO Wayne Dai will be moderating a round-table discussion. You can get more information on that (in Chinese only, tho) here, or follow VeriSilicon on WeChat.

QR code for SOI Academy and FD-SOI Training, Shanghaid 2019

The SOI Academy in Shanghai is an opportunity for experienced designers to gain solid expertise in FD-SOI. The event begins in the afternoon of May 23rd with a series of informative plenary talks by members of the SOI Consortium team, and by experts from our members Leti, Soitec, VeriSilicon, GlobalFoundries and NXP. The FD-SOI Training starts the next morning, on May 24th.. This is a hands-on event lead by top experts from Leti. The morning is devoted to digital design in FD-SOI, and the afternoon to RF design (including for 5G) in FD-SOI. Attendees will get a comprehensive understanding of design techniques for low-power chips leveraging the multiple benefits and flexibility of FD-SOI technology. Get more information here, or from the WeChat QR code.

We’ve got a busy schedule! To keep up to date with where we and our members will be promoting the SOI ecosystem, be sure to check our Events page regularly.

ByAdele Hars

EuroSOI-ULIS (April 2019, Grenoble) + Free FD-SOI RF Technology Workshop for 5G

If you’ve never been, you should put it on your list. EuroSOI is one of those seminal conferences where you get a front-row seat to emerging technologies. It provides an interactive forum for scientists and engineers working in the field of new materials and advanced nanoscale devices. In fact, some of the leading technologies enabled by SOI that are now in the mainstream got their start at this conference. Within a few years of being presented here, the best work continues to evolve and star in the “big” conferences like IEDM and VLSI.

The list of luminaries on the steering and technical committees is a veritable who’s who of the SOI research ecosystem, including two winners of the IEEE Andrew Grove Award: Technical Chair Jean-Pierre Colinge and Sorin Cristoloveanu. So, if you want to get in on the ground floor of next-gen SOI, or just get a look at the early stages of the pipeline, this is a great place to do it.

One of the key objectives is to promote collaboration and partnership between players in academia, research and industry. As such it provides opportunities for cross-fertilization across materials, devices and design. The networking is excellent, and the gala dinner is always an affair to remember.

This year, papers in the following areas have been solicited:

  • Advanced SOI materials and wafers. Physical mechanisms and innovative SOI-like devices
  • New channel materials for CMOS: strained Si, strained SOI, SiGe, GeOI, III-V and high mobility materials on insulator; carbon nanotubes; graphene and other two-dimensional materials.
  • Properties of ultra-thin films and buried oxides, defects, interface quality. Thin gate dielectrics: high-κ materials for switches and memory.
  • Nanometer scale devices: technology, characterization techniques and evaluation metrics for high performance, low power, low standby power, high frequency and memory applications.
  • Alternative transistor architectures including FDSOI, DGSOI, FinFET, MuGFET, vertical MOSFET, Nanowires, FeFET and Tunnel FET, MEMS/NEMS, Beyond-CMOS nanoelectronic devices.
  • New functionalities in silicon-compatible nanostructures and innovative devices representing the More than Moore domain, nanoelectronic sensors, biosensor devices, energy harvesting devices, RF devices, imagers, etc.
  • CMOS scaling perspectives; device/circuit level performance evaluation; switches and memory scaling. Three-dimensional integration of devices and circuits, heterogeneous integration.
  • Transport phenomena, compact modeling, device simulation, front- and back-end process simulation.
  • Advanced test structures and characterization techniques, parameter extraction, reliability and variability assessment techniques for new materials and novel devices.
  • Emerging memory devices.

Accepted papers appear in the conference proceedings in the IEEE Xplore® digital library. The authors of the best papers are invited to submit a longer version for publication in a special issue of Solid-State Electronics. A best paper award will be attributed to the best paper by the SiNANO institute.

EuroSOI-ULIS kicks off a full week of activities in Grenoble. The day after the conference, Incize and Soitec are sponsoring an excellent, free workshop on FD-SOI RF technologies for 5G: materials, devices, circuits and performance. The’ve got a terrific line-up of presentations planned.

And towards the end of the week, there are other important satellite events. The 1st open IRDS International Roadmap for Devices and Systems European Conference (April 4th, 2019) is jointly organized by the USA, Japan and EU, and sponsored by the IEEE and SiNANO Institute. Then the week finishes out with the IEEE ICRC International Conference on Rebooting Computing (April 5th, 2019).

Grenoble the first week of April 2019 is clearly the place to be.

ByAdele Hars

Share This! Terrific Guide to All Things FD-SOI in GSA Newsletter

Manuel Sellier, Product Marketing Manager at Soitec

Manuel Sellier, Product Marketing Manager at Soitec for the FD-SOI (and some other) SOI product lines has written an absolutely terrific primer entitled FD-SOI: A technology setting new standards for IoT, automotive and mobile connectivity applications. It’s in the August edition of the GSA Forum (the GSA is the Global Semiconductor Alliance).

If you know anyone who needs to quickly glean an understanding of FD-SOI that is both in-depth and broad, you’ll want to share this piece with them right away.

Before joining Soitec, Sellier was a chip designer at ST, where he gained deep experience designing FD-SOI chips. What’s more, he holds a Ph.D. in the modeling and circuit simulation of advanced MOS transistors, including FD-SOI and FinFETs. So, he really knows his stuff. But don’t worry that this might be too technical: Sellier’s writing is thoroughly accessible (and engaging!) for anyone in the industry.

He starts with the wafer history, then quickly moves on to the features from the designer’s standpoint. And he puts it all in a business perspective. I can’t recommend this piece enough – even if you think you know everything already yourself, you’re sure to learn something new.

ByAdele Hars

TowerJazz Ramps 300mm 65nm RF-SOI, extends long-term partnership with Soitec

Specialty foundry TowerJazz is ramping a 65nm version of its RF-SOI process on 300mm wafers at Fab 7 in Uozu, Japan. To support the ramp, the company has signed a contract with long-term partner, Soitec, guaranteeing a supply of tens of thousands of 300mm SOI silicon wafers, securing wafer prices for the next years and ensuring supply to its customers, despite a tight SOI wafer market.

The 300mm 65nm RF-SOI process will be offered at the Uozu, Japan fab, which is operated by the TowerJazz Panasonic Semiconductor Company (TPSCo). (Photo courtesy: TowerJazz)

Five of TJ’s seven fabs do RF-SOI. LNA (low-noise amplifers) are a big market driver, and with RF-SOI they can integrate the LNA with the switch, CEO Russell Ellwanter said in his lead keynote at the SOI Consortium’s 5th International RF-SOI Workshop in Shanghai (spring, 2018). BTW, that was in fact a very inspirational talk about Value Creation, and the importance of treating your suppliers with respect. He credited his company’s close relationship with RF-SOI wafer-supplier Soitec for TJ’s claim to the world’s best linearity.

“We are delighted to see the strong adoption of 300mm RF SOI through this large capacity and supply agreement with TowerJazz to augment our already significant 200mm RF-SOI partnership,” said Soitec CEO Paul Boudre. “TowerJazz was the first foundry to ramp our RFeSI products to high volume production in 200mm and continues as one of the industry leaders in innovation in this exciting RF market with advanced and differentiated offerings.”

According to the TJ press release (you can read it here), with its best in class metrics the TowerJazz 65nm RF-SOI process enables the combination of low insertion loss and high power handling RF switches with options for high-performance low-noise amplifiers as well as digital integration. The process can reduce losses in an RF switch improving battery life and boosting data rates in handsets and IoT terminals.

It’s a high-growth market, to be sure. Market researchers Mobile Experts predict that the mobile RF front-end market will reach $22 billion in 2022 from an estimated $16 billion in 2018. TowerJazz says its breakthrough RF SOI technology continues to support this high-growth market and is well-poised to take advantage of next-generation 5G standards, which will boost data rates and provide further content growth opportunities in the coming years.

Customers are already getting into position. For example, Maxscend (WuXi, China), a provider of RF components and IoT integrated circuits, is ramping in this new technology. “We chose TowerJazz for its advanced technology capabilities and its ability to deliver in high volume while continuously innovating with a strong roadmap. We specifically selected its 300mm 65nm RF SOI platform for our next-generation product line due to its superior performance, enabling low insertion loss and high power handling,” said Maxscend CEO Zhihan Xu.

As longtime ASN readers will know, we’ve been covering the evolutions of TJ’s RF-SOI platforms since the beginning of the decade. It’s worth noting, too, that beyond RF, TowerJazz also offers foundry customers other SOI-based processes, such as the new 0.18μm BCD SOI, a 200V SOI technology platform (announced in 2017, press release here) for motor drivers, industrial tools, electric vehicles and more. The previous generation 0.18μm SOI for automotive power management also offers exceptional area savings and is well-suited for high temperature operation. Back in 2014, here at ASN we did a great interview with TJ SVP Dr. Marco Racanelli about when and why they use SOI – and while processes have advanced, the basic drivers are still there, so it’s a still a good read.

And finally, designers will want to know that the TJ Multi-Project Wafer (MPW) Shuttle Program offers the 65nm RF-SOI process, as well as other SOI-based processes. See the website for scheduling and details.

ByAdele Hars

Leti and Soitec launch new Substrate Innovation Center – all partners welcome!

Leti and Soitec have announced a new collaboration and five-year partnership agreement to drive the R&D of advanced engineered substrates, including SOI and beyond. This agreement brings the traditional Leti-Soitec partnership to a whole new dimension and includes the launch of a world-class prototyping hub associating equipment partners to pioneer with new materials, The Substrate Innovation Center will feature access to shared Leti-Soitec expertise around a focused pilot line. Key benefits for partners include access to early exploratory sampling and prototyping, collaborative analysis, and early learning at the substrate level, eventually leading to streamlined product viability and roadmap planning at the system level.

CEOs Emmanuel Sabonnadière (Leti) and Paul Boudre (Soitec) announcing the new Substrate Innovation Center during Semicon West ’18. (Image courtesy: Leti)

Leading chip makers and foundries worldwide use Soitec products to manufacture chips for consumer applications targeting performance, connectivity, and efficiency with extremely low energy consumption. Applications include smart phones, data centers, automotive, imagers, and medical and industrial equipment, but this list is always growing, along with the need for flexibility to explore new applications starting at the substrate level. At the Substrate Innovation Center, located on Leti’s campus, Leti and Soitec engineers will explore and develop innovative substrate features, expanding to new fields and applications with a special focus on 4G/5G connectivity, artificial intelligence, sensors and display, automotive, photonics, and edge computing.

“Material innovation and substrate engineering make entire new horizons possible. The Substrate Innovation Center will unleash the power of substrate R&D collaboration beyond the typical product road maps, beyond the typical constraints,” said Paul Boudre, Soitec CEO. “The Substrate Innovation Center is a one-of-a-kind opportunity open to all industry partners within the semiconductor value chain.”

Whereas a typical manufacturing facility has limited flexibility to try new solutions and cannot afford to take risks with prototyping, the mission of the Substrate Innovation Center is to become the world’s preferred hub for evaluating and designing engineered substrate solutions to address the future needs of the industry, inclusive of all the key players, from compound suppliers to product designers. Using state of the art, quality-controlled clean room facilities, and the latest industry-grade equipment and materials, Leti and Soitec engineers will conduct testing and evaluation at all levels of advanced substrate R&D.

“Leti and Soitec’s collaboration on SOI and differentiated materials, which extends back to Soitec’s launch in 1992, has produced innovative technologies that are vital to a wide range of consumer and industrial products and components,” said Emmanuel Sabonnadière, Leti CEO. “This new common hub at Leti’s campus marks the next step in this ongoing partnership. By jointly working with foundries, fabless, and system companies, we provide our partners with a strong edge for their future products.”

ByAdele Hars

SEMI Honors RF-SOI Innovators Raskin & Aspar

RF-SOI innovators Jean-Pierre Raskin of UCL and Bernard Aspar of Soitec changed the course for key RF chips. The industry has long recognized their contributions: their solution for “trap-rich” RF-SOI wafers is now the starting point to virtually every FEM in every smart phone on the planet (really!). And of course here at ASN we’ve been following their work for over a decade. Now more accolades are coming in.

The latest is the 2017 European SEMI Award, which was given at ISS Europe 2018 for “…their seminal work with radio frequency silicon-on-insulator (RF-SOI) substrates” (read the press release here). As SEMI notes, the “…award winners’ pioneering research and collaboration with academia and industry led to major advances in RF switches and ushered RF-SOI technology from concept to worldwide adoption.” Aspar and Raskin were nominated and selected by their peers within the international semiconductor community.

Bernard Aspar, Executive Vice President, Communication & Power BU at Soitec
Aspar founded CEA-Leti spinoff Tracit Technologies in 2003. He was appointed senior vice president of the Tracit Division (now the Communication & Power business unit) when Soitec acquired Tracit in 2006. He has more than 15 years of experience in direct wafer-bonding and layer transfer. Aspar has filed more than 35 patents and co-authored some 100 scientific articles. He holds engineering and Ph.D. degrees in materials sciences and a master’s degree in microelectronics from the University of Montpellier, France.

Jean-Pierre Raskin, professor, Université catholique de Louvain (UCL)
Raskin contributed to pioneering scientific studies demonstrating that silicon-based MOS technology could enable affordable, high-quality mobile devices. His findings led to the advent of RF-SOI technology and today impact the global microelectronics industry. He is an IEEE Senior Member, EuMA Associate Member and Member of the Research Center in Micro and Nanoscopic Materials and Electronic Devices of the Université catholique de Louvain, where he has been a full professor since 2007. He is author or co-author of more than 350 scientific articles.

Their advanced RF-SOI technology is now behind a wide range of applications and systems in areas including mobile devices, satellite communications, IoT, automotive radar and aerospace.

If you want to better understand all this, a few years ago UCL and Soitec teams contributed an excellent article to ASN. It clearly explains how and why these new substrates came to be. You can still read it here. (Or if you’re still a little confused about RF-SOI vs. RF on FD-SOI, here’s a piece we did back in 2015 that explains the basics.)

ByAdele Hars

Does China Mobile Care About RF-SOI for 5G? Oh Yes.

China Mobile is the world’s largest* telco. So when Danni Song, one of the company’s high-level project managers presented at the SOI Consortium’s 5th International RF-SOI Workshop in Shanghai, you can bet people listened. With each new slide, a glowing sea of cell phone cameras rose over the heads of the audience in the huge, packed ballroom.

(Photo courtesy: SOI Consortium, Simgui)

Over the last month, there’s been a lot more coverage of 5G in the press (especially after the recent Mobile World Congress (MWC) – check out Junko Yoshida’s EETimes piece for example). For ASN readers who want to know more about 5G and RF-SOI in China, here’s a reminder that Song’s presentation, and many of the others given by leading companies at the RF-SOI Workshop last fall, are now posted on and freely available the Consortium website Events page. Click here for the listing and links.

The theme of the workshop was IoT, mobile, 5G connectivity, and mmW. As Dr. Xi Wang, Director General of SIMIT/CAS (the Shanghai Institute of Microsystem & Information Technology in the Chinese Academy of Sciences), said in his opening keynote, China is strong in RF-SOI. RF-SOI will be growing at a CAGR of over 15% for the next five years, and China has production, design, wafer manufacturing and good momentum. “We will make a great contribution to the whole IC industry,” he predicted.

Of note, too, Russell Ellwanter, CEO of TowerJazz, gave what turned out to be a very inspirational keynote about Value Creation, and the importance of treating your suppliers with respect. He credits his company’s close relationship with RF-SOI wafer-supplier Soitec for TJ’s claim to the world’s best linearity. Five of their seven fabs do RF-SOI. LNA (low-noise amplifers) are a big market driver, and with RF-SOI they can integrate the LNA with the switch.

Here are some more highlights from the day – but by all means check out the presentations for details. (You can click on the illustrations to see them in full screen.)

China Mobile

In her presentation, Embrace a Brand New Cooperation in 5G Era, Song asked where RF-SOI could help in her wish list. Could it increase integration and decrease cost and power consumption? Can it help improve NB-IoT device performance? The supply chain needs to come back around into a circle, so that the telcos are connected to and get insights from the wafer substrate providers, she said.

(Courtesy: China Mobile, SOI Consortium)

China Mobile has a 5G Innovation Center, and has established test labs in 8 cities. And the government has announced a 5G launch in 2020, with pre-commercial trials now going into 20 cities. So she was at the RF-SOI Workshop as much to listen and learn as to share China Mobile’s vision.

Sony

(Courtesy: SOI Consortium and Sony)

The presentation by Kidetoshi Kawasaki, GM of Sony Semiconductor Solutions, focused on antenna tuning, which he said is one of the fastest growing things in cell phones. Antenna Tuning Progress & SOI Single Chip Integration for 4G/5G UE (note that UE = user equipment) looks at antenna aggregation, and why it is important for carrier aggregation (CA) and MIMO. Sony has developed an SOI-based next-gen process for 5G integrating passive components. That’s why RF-SOI is important and will be continued to be used in the mobile market, he said.

GlobalFoundries

GF has developed demo vehicles to help customers, said Sr. Director of the RF Business Unit, Peter Rabbeni. (Over the years they’ve shipped over 32 billion RF-SOI devices, btw.) In his presentation, RF-SOI: Delivering Performance & Integration for the Next Generation of Mobile,he noted that RF is becoming more complex than digital. As a result there is a need to integrate to help reduce cost: this is a direct correlation to the standards that are driving complexity. At the same time, performance requirements are increasing, so the challenge is driving increased performance at the same or lower cost than previous generations of products.

(Courtesy: GlobalFoundries and SOI Consortium)

To meet 4G/LTE and 5G’s evolving performance demands, GF has recently introduced two new RF-SOI platforms, which he detailed in the presentation. 8SW enables increased integration of front-end modules (FEMs), while 45RFSOI is for mmWave FEMs. (In a separate presentation, IDDO-IC CEO Denis Masliah presented a Differential Complementary Millimeter Wave Power Amplifier for 5G using 45RFSOI process, which is currently being fabbed by GF.)

RF-SOI Wafer Suppliers

The two leading RF-SOI wafer suppliers, Soitec and partner Simgui, both gave excellent presentations. Though Soitec EVP Bernard Aspar’s presentation Engineered Substrates as Foundation of Innovation in RF is not posted, he made some important points. Up til now, RF-SOI has mainly been about switches and tuners, he said, but there are other opportunities that offer the potential for huge growth. The full supply chain needs to be prepared, he said, and suppliers need to understand each other. Each technology requires the right substrate – and even as we move into sub-6GHz 5G, there is still work to be done in 4G. In fact Soitec is now offering services to help customers better understand new substrate options.

(Courtesy: Simgui, SOI Consortium)

Soitec’s partner in China, Simgui, now uses Soitec’s Smart CutTM technology for RF-SOI wafer production. Together the two are now producing over a million 200mm RF-SOI wafers/year, said Simgui Sr. Director, Kerui Wang. His presentation, RF-SOI – a Secured Substrate Supply Chain, looked at their strategic partnership with Soitec, wherein they use the same tools and processes to deliver the same products meeting the same specs.

Fabs and Fabless

Two leading fabless companies – RDA Microelectronics (which was acquired by Spreadtrum) and SmarterMicro also presented their RF-SOI activities. Although their ppts are not posted, here are a few highlights.

Longtime ASN readers will recall that RDA has been shipping high-volume, RF-SOI based chips to Samsung and others for over five years. In the presentation, RF-SOI in Current and Future RFFE Solutions, Engineering AVP Joseph Jia said that over last two years alone they’ve released almost 50 RFFE (front end) chips on RF-SOI. They see RF-SOI as the right match for switches, tuners and NB-IoT because of the low-voltage and tunability advantages.

SmarterMicro’s CTO, Peter Li, sees RF-SOI as a cornerstone of 5G. In his presentation, Reconfigurable RFFE in 5G, he said the goal is smart systems on fewer dies to decrease size and cost.

Jeff Zhu, assistant director at SMIC, presented SMIC, 0.13um RF-SOI Platform Updates. Mainland China’s largest foundry has recently moved its RF-SOI process from 180 to 130um, and he walked us through some chip designs.

Throughout the day, presenters noted that RF is a great opportunity for China to take a leadership position. As one panelist at the end of the day noted, RF depends more on expertise and talent than digital, which depends more on manpower.

Nanjing: A China RF Capital

Just before the Shanghai events, there was a 2-day event sponsored by the City of Nanjing, co-organized by SOI Industry Consortium and the City of Nanjing. Over 200 participants attended the workshop and tutorials on SOI applications, SoC development and manufacturing, EDA & IP ecosystem, as well as a design tutorial for More than Moore SOI ecosystem. Almost all of those presentations are now posted on the Consortium – click here to get them.

Some of the participants in the SOI Consortium’s delegation also had the opportunity to visit the enormous Nanjing Sofware Park. Nanjing, we learned, is often considered China’s “RF capital”. The list of the world’s major RF players working in partnership there is certainly an international who’s who.

So, lots of good RF-SOI/5G info on the SOI Consortium website – check it out!

~ ~ ~

*in terms of market value and subscribers.

ByAdele Hars

Customer demand drives Soitec launch of FD-SOI wafer pilot line in Singapore

SOI wafer leader Soitec is launching a pilot line to produce FD-SOI wafers in its Singapore wafer fab (press release here). This is the first stage in beginning FD-SOI production in Singapore and providing multi-site FD-SOI substrate sourcing to the global semiconductor market.

“Our decision to launch this FD-SOI line in Singapore as well as the decision we already made to ramp up our FD-SOI production in France are based on direct customer demand,” said Paul Boudre, CEO of Soitec. “These are very important milestones for Soitec and the expanding FD-SOI ecosystem. In Singapore, we plan to get full qualification at the customer level in the first half of 2019 and then increase capacity in line with market commitment.”

Soitec reports that its investment in Singapore to launch its FD-SOI pilot line is approximately US$40 million, to be spent over a 24-month period.

ByAdele Hars

FD-SOI/Shanghai Forum – Panel Sees Great Things Coming

shanghaifdsoi2016

Shanghai FD-SOI Forum Panel Discussion (left to right): Wayne Dai, CEO Verisilicon (moderator); Marshal Cheng, SVP Leadcore; Mahesh Tirupattur, EVP Analog Bits; Subramani Kengeri, VP GlobalFoundries; Handel Jones, CEO IBS; Christophe Maleville, VP Soitec. (Photo courtesy SOI Consortium and Verisilicon)

The panel discussion rounding out the day at the recent FD-SOI Forum in Shanghai ended an exciting week (GF’s 12nm FD-SOI & ecosys, Sony’s FD-SOI GPS in the Huami watch) on a decidedly optimistic note. Here’s a quick rundown of some of what was said.

(As soon as the presentations given earlier in the day are posted, we’ll take a quick cruise through those, too.)

Anything IOT is better on FD-SOI

Mahesh Tirupattur, EVP at low-power SERDES pioneer Analog Bits started it off with the reminder that for anything “always on” in IoT, FD-SOI’s always better. They had a terrific experience porting their SERDES IP to 28nm FD-SOI (which they detailed last spring – see the ppt here). The port from 28 bulk took 2 1/2 months (vs. to FinFET, which took almost 6). Even without using body bias, they got performance up by around 15% and leakage down by about 30% (he added that with body bias, they could get five times that).

He compared porting to FD-SOI to playing high school ball, vs. a port to FinFET which is like competing in the Olympics. ESD was different, but not a big deal – you just need to “read the manual”. Heating? Nothing an engineer can’t resolve. For IoT, FinFETs are like using a cannon to shoot a mosquito, he quipped.

He later ticked off a few more advantages of FD-SOI for the IoT design community: system cost, lower power – and here’s a particularly interesting observation – cheaper packaging. They were able to do wire bonding, so they were able to package a wearable video app in a plastic capsule. All things considered, FD-SOI offers the perfect solution, he said (and now he’s got silicon with “dramatic results” to prove it), adding that the IP guys need to evangelize this.

Moving really fast

GloFo VP Subramani Kengeri took a moment to look back before he looked forward. “FD-SOI is not new,” he reminded us. It was explored and researched for a decade. But at the beginning, CPUs were driving the industry, and everyone else followed suite. But now in mobile and IoT, RF is becoming more important, and what was good for the CPU is no longer what’s good for everything else. He tipped his hat to Soitec, ST and Leti, who “kept the lights on” and kept driving FD-SOI forward. Now with 5G on the horizon, FD-SOI is the enabler, he added.

He also noted that FD-SOI gets you the maximum memory onchip, and that with 12FDX, we’ll be seeing the world’s smallest SRAM. So that opens a new degree of freedom. The EDA partners have been working on automating body bias in the PDK for greater power management. He cites an ARM core with on-demand performance that can be used “intelligently”. Is it complicated? Not really, he says, especially if it’s automated. In fact he sees body bias opening the market for “extraordinary, innovative products” very soon. Key IP is in place. And it’s not just for IoT: aside from high-end CPUs, FD-SOI is optimal for everything. “Everything’s happening now, and it’s moving really fast,” he said.

Clear substrate path to 7nm

SOI wafer leader Soitec VP Christophe Maleville was asked if he saw any limit on manufacturing the ultra-thin wafers for the 7nm node. No problem, he said – they can do those wafers with 4nm of strained top silicon and a 10nm layer of insulating BOX. They’ve been working on FD-SOI wafers for over a decade, he reminded us, with Leti, IBM and ST. Back in 2013 when ST announced the Nova-Thor hitting 3GHz (or 1GHz at just 0.6V), everything was in place: the metrology was ready, reliability was controlled.

Today they’ve got a 15nm BOX layer in manufacturing, with no limits in moving to 10nm for customers going for very low power. For the strained top silicon needed for the 7nm node, they spent years working on strain with IBM et al in Albany, so they’re not starting from scratch. That substrate will be mature in just two years, so from a substrate point of view, he said, “7nm is no problem”.

Coming fast: lots of products (and a fab for China?)

In response to a follow-up question from a well-known analyst in the China tech industry, panel moderator and Verisilicon CEO Wayne Dai said that the design community in China has the skills to do FD-SOI, no problem. He’d like to see more IP, but FD-SOI has powerful advantages in terms of cost, analog/memory and back biasing.

Dai then asked the panelists if they thought we’d be seeing a foundry in China opting for FD-SOI by next year – all but one said yes. One thing all the panelists agreed on, however: they all expect to see FD-SOI products (and lots of them) on the stage at the Shanghai FD-SOI forum in 2017.

ByAdministrator

12nm FD-SOI on the Roadmap for H1/2019 Customer Tape-out! Says GloFo (While Giving 22FDX Ecosys a Great Boost)

gf_logo12nm FD-SOI has now officially joined the GlobalFoundries’ roadmap, targeting intelligent, connected systems and beating 14/16nm FinFET on performance, power consumption (by 50%!) and cost (see press release here). Customer product tape-outs are expected to begin in the first half of 2019. GloFo also announced FDXcelerator™, an ecosystem designed to give 22FDX™ SoC design a boost and reduce time-to-market for its customers (press release here).

gf_12fdxslide16lowres

(Courtesy: GlobalFoundries and SOI Consortium Shanghai FD-SOI Forum 2016)

The news turned heads worldwide (hundreds of publications immediately picked up the news) – and especially in China. “We are excited about the GlobalFoundries 12FDX offering and the value it can provide to customers in China,” said Dr. Xi Wang, Director General, Academician of Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology.  “Extending the FD-SOI roadmap will enable customers in markets such as mobile, IoT, and automotive to leverage the power efficiency and performance benefits of the FDX technologies to create competitive products.”

Wayne Dai, CEO of VeriSilicon (headquartered in Shanghai but designing for the world’s biggest names in the chip biz), added, “We look forward to extending our collaboration with GlobalFoundries on their 12FDX offering and providing high-quality, low-power and cost-effective solutions to our customers for the China market. The unique benefits of FD-SOI technologies enable us to differentiate in the automotive, IoT, mobility, and consumer market segments.”

The ultra-thin FD-SOI wafers are where it all starts, and they’re ready to go in high volume, says Paul Boudre, CEO of SOI wafer leader Soitec. “We are very pleased to see a strong momentum and a very solid adoption from fabless customers in 22FDX offering,” he adds. “Now this new 12FDX offering will further expand FD-SOI market adoption. This is an amazing opportunity for our industry just in time to support a big wave of new mobile and connected applications.”

All About 12

GloFo’s 12FDXTM platform, which builds on the success of its 22FDXTM offering, is designed to enable the intelligent systems of tomorrow across a range of applications, from mobile computing and 5G connectivity to artificial intelligence and autonomous vehicles. Increased integration of intelligent components including wireless (RF) connectivity, non-volatile memory, and power management—all while driving ultra-low power consumption—are key 12FDX selling points that FinFETs can’t touch.

The technology also provides the industry’s widest range of dynamic voltage scaling and unmatched design flexibility via software-controlled transistors—capable of delivering peak performance when and where it is needed, while balancing static and dynamic power for the ultimate in energy efficiency.

gf_12fdxslide20lowres

(Courtesy: GlobalFoundries and SOI Consortium Shanghai FD-SOI Forum 2016)

“Some applications require the unsurpassed performance of FinFET transistors, but the vast majority of connected devices need high levels of integration and more flexibility for performance and power consumption, at costs FinFET cannot achieve,” said GLOBALFOUNDRIES CEO Sanjay Jha. “Our 22FDX and 12FDX technologies fill a gap in the industry’s roadmap by providing an alternative path for the next generation of connected intelligent systems. And with our FDX platforms, the cost of design is significantly lower, reopening the door for advanced node migration and spurring increased innovation across the ecosystem.”

Kudos came in from G. Dan Hutcheson, CEO of VLSI Research, IBS CEO Handel Jones, Linley Group Founder Linley Gwennap, Dasaradha Gude, CEO of IP/design specialists INVECAS, Leti CEO Marie Semeria and NXP VP Ron Martino (they’ve already started on 28nm FD-SOI for their i.MX line – read his superb explanations in ASN here).

22 Design Plug ‘n Play

Simultaneously to the 12FDX announcement, GloFo announced the FDXcelerator Partner Program. It creates an open framework under which selected Partners can integrate their products or services into a validated, plug and play catalog of design solutions. This level of integration allows customers to create high performance designs while minimizing development costs through access to a broad set of quality offerings, specific to 22FDX technology. The Partner ecosystem positions members and customers to take advantage of the broad adoption and accelerating growth of the FDX market.

Initial partners of the FDXcelerator Partner Program are: Synopsys (EDA), Cadence (EDA), INVECAS (IP and Design Solutions), VeriSilicon (ASIC), CEA Leti (services), Dreamchip (reference solutions) and Encore Semi (services). These companies have already initiated work to deliver advanced 22FDX SoC solutions and services.

Initial FDXcelerator Partners have committed a set of key offerings to the program, including:

  • tools (EDA) that complement industry leading design flows by adding specific modules to easily leverage FDSOI body-bias differentiated features,
  • a comprehensive library of design elements (IP), including foundation IP, interfaces and complex IP to enable foundry customers to start their designs from validated IP elements,
  • platforms (ASIC), which allow a customer to build a complete ASIC offering on 22FDX,
  • reference solutions (reference designs, system IP), whereby the Partner brings system level expertise in Emerging application areas, enabling customers to speed-up time to market,
  • resources (design consultation, services), whereby Partners have trained dedicated resources to support 22FDX technology; and
  • product packaging and test (OSAT) solutions.

Additional FDXcelerator members will be announced in the following months.