Author Archive Adele Hars

FD-SOI for RF & mmWave: Free Workshop, 4 April ’19, Grenoble

FD-SOI for RF and mmWave communications is a hot topic. In high-data rate communications like RF and millimeter-wave devices in particular, FD-SOI delivers high-performance with numerous unique advantages, making it most likely the fastest RF-CMOS technology on the market.

If you’d like to take a deep dive and learn more about it, Soitec and Incize are sponsoring a free, full-day workshop in Grenoble on April 4th, 2019. Click here for registration information. The workshop follows the day after the IEEE/EDS EuroSOI-ULIS conference there (you can read about the full conference in a previous ASN post).

This technical workshop will cover the FD-SOI technology platform with a focus on its compatibility with RF & mmWave communications. Attendees will hear from notable FD-SOI leaders and experts from leading industry and research institutions presenting updates on key developments and building blocks across the semiconductor value chain. Topics will include circuit design, device fundamentals, simulation and characterization of RF devices, test, CMOS technology and substrate technologies enabling FD-SOI. In addition, the workshop will include an overview about how FD-SOI technology is benefiting current and future end user applications.

Here’s the agenda:

FD-SOI technology platform: new standards for emerging consumer electronics [Click to enlarge.]

Synopsys IP for 22FDX Automotive – Why It Matters (Courtesy: D. Nenni, semiwiki)

Daniel Nenni, CEO & Founder, SemiWiki.com

Note to our readers: Semiwiki Founder Dan Nenni recently wrote an excellent piece on the importance of the Synopsys investment in automotive IP for GlobalFoundries’ 22FDX (FD-SOI) technology. He graciously has given us permission to reprint it here in ASN.

By Dan Nenni, CEO & Founder, SemiWiki.com

IP vendors have always had the inside track on the status of new process nodes and what customers are planning for their next designs. This is even more apparent now that systems companies are successfully doing their own chips by leveraging the massive amounts of commercial IP available today. Proving once again that IP really is the foundation of modern semiconductor design.

Automotive is one of those market segments where systems companies are doing their own chips. We see this first hand on SemiWiki as we track automotive related blogs and the domains that read them. To date we have published 354 automotive blogs that have been viewed close to 1.5M times by more than 1k different domains.

(Courtesy: semiwiki.com and GlobalFoundries)

The recent press release by Synopsys and GLOBALFOUNDRIES didn’t get the coverage it deserved in my opinion and the coverage it got clearly missed the point. Synopsys, being the #1 EDA and #1 IP provider, has the semiconductor inside track like no other. For Synopsys to make such a big investment in FD-SOI (GF FDX) for automotive grade 1 IP is a huge testament to both the technology and the market segment, absolutely.

I talked to John Koeter, Vice President of Marketing for IP, Services and System Level Solutions. John is a friend and one of the IP experts I trust. 3 years ago Synopsys got into automotive grade IP and racked up 25 different customer engagements just last year. The aftermarket electronics for adding intelligence (autonomous-like capabilities, cameras, lane and collision detection, etc…) to older vehicles is also heating up, especially in China.

I also talked to Mark Granger, Vice President of Automotive Product Line Management at GLOBALFOUNDRIES. Mark has been at GF for two years, prior to that he was with NVIDIA working on autonomous chips with deep learning and artificial intelligence. According to Mark, GF’s automotive experience started with the Singapore fabs acquired from Chartered in 2010. The next generation automotive chips will come from the Dresden FDX fabs which are right next door to the German automakers including my favorite, Porsche.

One thing we talked about is the topology of the automotive silicon inside a car and the difference between central processing and edge chips. Remember, some of these chips will be on glass or mirrors or inside your powertrain. The edge chips are much more sensitive to power and cost so FDX is a great fit.

Mark provided a GF link for more information:

Here is the link to our Automotive resources:
https://www.globalfoundries.com/mark…ons/automotive

One thing Mark, John, and I agree on is that truly autonomous cars for the masses is still a ways out but we as an industry are working very hard to get there, absolutely.

Here is the press release:

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process

Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs

MOUNTAIN VIEW, Calif., and SANTA CLARA, Calif., Feb. 21, 2019 /PRNewswire/ —
Highlights:

  • Synopsys DesignWare IP for automotive Grade 1 and Grade 2 temperature operation on GLOBALFOUNDRIES 22FDX®process includes Logic Libraries, Embedded Memories, Data Converters, LPDDR4, PCI Express 3.1, USB 2.0/3.1, and MIPI D-PHY IP
  • Synopsys’ IP solutions implement additional automotive-grade design rules for the 22FDX process to meet reliability and 15-year automotive operation requirements
  • Synopsys’ IP that supports AEC-Q100 temperature grades and ISO 26262 ASIL Readiness accelerates SoC reliability and functional safety assessments
  • Join Synopsys and GLOBALFOUNDRIES at Mobile World Congress in Barcelona, Spain on Feb. 25 for a panel on “Intelligent Connectivity for a Data-Driven Future”

Synopsys, Inc. (Nasdaq: SNPS) and GLOBALFOUNDRIES (GF) today announced a collaboration to develop a portfolio of automotive Grade 1 temperature (-40ºC to +150ºC junction) DesignWare® Foundation, Analog, and Interface IP for the GF 22-nanometer (nm) Fully-Depleted Silicon-On-Insulator (22FDX®) process. By providing IP that is designed for high-temperature operation on 22FDX, Synopsys enables designers to reduce their design effort and accelerate AEC-Q100 qualification of system-on-chips (SoCs) for automotive applications such as eMobility, 5G connectivity, advanced driver assistance systems (ADAS), and infotainment. The Synopsys DesignWare IP implements additional automotive design rules for the GF 22FDX process to meet stringent reliability and operation requirements. This latest collaboration complements Synopsys’ broad portfolio of automotive-grade IP that provides ISO 26262 ASIL B Ready or ASIL D Ready certification, AEC-Q100 testing, and quality management.

“Arbe’s ultra-high-resolution radar is leveraging this cutting-edge technology that enabled us to create a unique radar solution and provide the missing link for autonomous vehicles and safe driver assistance,” said Avi Bauer, vice president of R&D at Arbe. “We need to work with leading companies who can support our technology innovation. GF’s 22FDX technology, with Synopsys automotive-grade DesignWare IP, will help us meet automotive reliability and operation requirements and is critical to our success.”

“GF’s close, collaborative relationships with leading automotive suppliers and ecosystem partners such as Synopsys have enabled advanced process technology solutions for a broad range of driving system applications,” said Mark Ireland, vice president of ecosystem partnerships at GF. “The combination of our 22FDX process with Synopsys’ DesignWare IP enables our mutual customers to speed the development and certification of their automotive SoCs, while meeting their performance, power, and area targets.”

“Synopsys’ extensive investment in developing automotive-qualified IP for advanced processes, such as GF’s 22FDX, helps designers accelerate their SoC-level qualifications for functional safety, reliability, and automotive quality,” said John Koeter, vice president of marketing for IP at Synopsys. “Our close collaboration with GF mitigates risks for designers integrating DesignWare Foundation, Analog, and Interface IP into low-power, high-performance automotive SoCs on the 22FDX process.”

Resources
For more information on Synopsys DesignWare IP for automotive Grade 1 temperature operation on GF’s 22FDX process:

~ ~ ~

About the Author

Daniel  Nenni has worked in Silicon Valley for over 35 years with computer manufacturers, electronic design automation software, and semiconductor intellectual property companies. He is the founder of SemiWiki.com (an open forum for semiconductor professionals) and the co-author and publisher of “Fabless: The Transformation of the Semiconductor Industry”, “Mobile Unleashed: The Origin and Evolution of ARM Processors in our Devices” and “Prototypical: The Emergence of Prototyping for SoC Design”.  He is an internationally recognized business development professional for companies involved with the fabless semiconductor ecosystem.

SOI Wafers on the Move – News from Soitec with Samsung, Simgui, China Mobile, Renesas & More

The world’s SOI wafer leader, Soitec is posting strong sales and issuing a steady stream of compelling announcements. This is clearly good news for everyone in the SOI ecosystem, as the outlook for the various families of SOI wafers is excellent.

Soitec CEO Paul Boudre told ASN, “I’m excited because of the fundamentals behind the growth. Reaching down the supply chain gives us the ability to help our customers with the next generation. We’re not in a technology push, but in a technology pull. It’s long-term growth we’re seeing.”

Paul Boudre, CEO, Soitec

Soitec has brought people from the device side into the company to better understand the solutions customers need, he said. They’re talking to the carmakers, telcos and more, working one-on-one with them to understand the constraints and the problems they are trying to fix, in order to deliver a solution based on the Soitec product roadmap.  Boudre is particularly excited about 5G. It’s not just new handsets and systems: the entire infrastructure will require a massive upgrade, across which Soitec has a role to play supplying SOI wafers.

They also have other SOI and engineered substrates for specific markets like filters, displays, imaging and power. He adds that they’re seeing nice growth in SOI wafers for photonics, driven by cloud computing, and for smart power in markets like automotive and white goods.

Here’s a roundup of some recent developments. Chips made on RF-SOI wafers are in every mobile phone made on the planet these days, so lets look at what they’re doing there first. We’ll follow that with an update on the surge of activity on FD-SOI wafers.

Simgui, RF & Power

It’s no secret that the runaway success of RF-SOI for front-end modules (FEMs) in mobile phones has stretched wafer capacity mightily. To help address this, in February 2019 Soitec and China’s SOI wafer leader Simgui announced an enhanced partnership and increased production capacity of 200mm SOI wafers in China, securing future growth. The two companies redefined their manufacturing and licensing relationship to better serve to better serve the growing global market for RF-SOI in mobile and Power-SOI in automotive and consumer electronics.

(Image courtesy: Simgui)

Since the two companies signed their original licensing and technology transfer agreement in May 2014, Simgui has mastered Soitec’s Smart Cut™ proprietary process to deliver world-class RF-SOI and Power-SOI products. Simgui’s strategic partnership with Soitec allows them to use the same tools and processes to deliver the same products meeting the same specifications.

Simgui has invested in their Shanghai fabrication line in order to double annual 200mm SOI wafer production capacity from 180,000 to 360,000. The fab is production ready, having been qualified by multiple key customers inside and outside China.

Simgui CEO Dr. Jeffrey Wang notes, “China has design, wafer manufacturing and good momentum in the IC industry. We are committed to our strategic partnership with Soitec to keep advancing SOI as China’s key differentiator.”

With China Mobile

China Mobile’s interest in the SOI ecoystem is clear: they’ve presented at the SOI symposia in Shanghai for two years running now. In a February 2019 press release, Soitec announced that they’ve joined the China Mobile 5G Innovation Center – and they’re the first materials supplier to do so. The China Mobile 5G Innovation Center is an international alliance chartered to develop 5G communication solutions for China, the world’s largest wireless communications market with 925M mobile subscribers. The Center aims to accelerate the development of 5G by establishing a cross-industry ecosystem, setting up open labs to create new products and applications, and fostering new business and market opportunities.

Soitec’s RF-SOI wafers have been critical in the deployment of 4G communications, and the opportunity in 5G is even bigger. Plus the company’s FD-SOI wafers enable the technology that brings unique RF performance, making it an ideal solution for many applications including mmWave communications such as 5G transceivers. They are also enabling full RF and ultra-low-power computing integration for IoT and edge computing.

For Samsung Foundry

In January 2019, Soitec announced that they have expanded their collaboration with Samsung Foundry on the FD-SOI wafer supply, securing the high-volume Samsung needs to meet industry’s current and future demands in consumer, IoT and automotive applications. The agreement is built on the existing close relationship between the companies and guarantees wafer supply for Samsung’s FD-SOI platform starting with the 28FDS process.

“Samsung has been committed to delivering transformative industry leading technologies,” said Ryan Lee, Vice President of Foundry Marketing at Samsung Electronics. “FD-SOI is currently setting a new standard in many high-growth applications including IoT with ultra-low-power devices, automotive systems such as vision processors for ADAS and infotainment, and mobile connectivity from 5G smartphones to wearable electronics. Through this agreement with Soitec, our long-term strategic partner, we hope to lay the foundation for steady supply to meet high-volume demands of current and future customers.”

“This strategic agreement validates today’s high-volume manufacturing adoption of FD-SOI,” said Christophe Maleville, Soitec’s Executive Vice President, Digital Electronics Business Unit. “Soitec is ready to support Samsung’s current and long-term growth for ultra-low power, performance-on-demand FD-SOI solutions.”

Silicon Catalyst Partner

In February 2019 Soitec announced they’d become a strategic partner in Silicon Catalyst’s start-up incubator. Silicon Catalyst is a Silicon Valley-based incubator providing silicon-focused start-ups access to a world-class network of advisors, design tools, silicon devices, networking, access to funding and marketing acumen needed to successfully launch their businesses.

(Image courtesy: Soitec, Silicon Catalyst)

Soitec will engage in this start-up ecosystem to gain insight into the newest technologies and applications across high-growth markets, and to guide nascent technologies to successful market penetration.

“As a Strategic Partner of Silicon Catalyst, Soitec has a unique opportunity to grow our visibility among early-stage semiconductor companies,” said Thomas Piliszczuk, Executive VP of Global Strategy for Soitec. “Engineered substrates give semiconductor related start-ups a competitive edge in developing new high-performance, energy-efficient solutions.”

Pete Rodriguez, CEO of Silicon Catalyst said, “Soitec is creating technical advances that are enabling the next generation of products across many market segments. Their SOI technology is a key ingredient to meet the diverse challenges for breakthrough differentiated semiconductor products, combining ultra-low power with excellent analog/mixed-signal performance.”

Energy Harvesting with Renesas

And finally, jumping back a few months, at the end of 2018 Soitec announced that their SOI wafers are at the heart of a new Renesas SOTBTM energy harvesting chipset, opening a self-powered future for IoT devices. SOTB is how Renesas refers to its FD-SOI technology.

(Image courtesy: Renesas)

(BTW, here at ASN we’ve been covering the work that Renesas has quietly done on this technology since 2005 (!).  And we did a piece  about an EETimes Japan article back in 2015 that revealed the launching of the 65nm work. )

Soitec supports the Renesas SOTB chipset with a special version of its FD-SOI wafer product line. The new Renesas SOTB-based chipset overcomes the energy constraints of IoT devices and reduces the power consumption to approximately one-tenth that of the existing products in the market today. That makes the chipset perfectly suited for extreme low-power, maintenance-free and energy harvesting applications including wearable devices, smart home applications, smart watches, portable appliances, infrastructure monitoring systems, industrial, business, agricultural, healthcare, as well as health and fitness apparel, shoes, drones and more.

Renesas has developed its energy harvesting chip using its unique SOTB 65nm process technology that achieves both low active current of 20 μA/MHz and deep standby current of 150 nA. As a result, Renesas’ SOTB chipsets offer enhanced control of the transistor electrostatics and reductions in both the standby and active currents to levels never before achieved. Additionally, Renesas has successfully delivered the dopant-less channel to suppress Vth variability for the ultra-low voltage operation, and the ultra-low power back bias control to reduce the standby current at the same time.

“To spur innovations in IoT and consumer applications, we have integrated our exclusive energy-harvesting SOTB technologies into our Energy Harvest Controller,” said Mr. Toru Moriya, Vice President of Renesas’ Home Business Division, Industrial Solutions Business Unit. “We are confident that our SOTB technology built on Soitec’s ultrathin substrates can deliver unmatched capabilities for developing maintenance-free IoT devices that never require power supply or replacement, giving rise to a new IoT global market based on endpoint intelligence.”

(click to enlarge) Block diagram of the Renesas R7F0E Embedded Controller, their first device based on their SOTB (aka FD-SOI) technology. Target applications are battery-free connected IoT sensing devices with endpoint intelligence. (Image courtesy Renesas)

The new R7F0E Embedded Controller is the first device based on Renesas’ SOTB technology. Developers can now design applications that need no battery or recharging.  The R7F0E features: an Arm® Cortex® -M0+;  operating frequency up to 32 MHz, and up to 64 MHz in boost mode (that’s body bias in action!); memory of up to 1.5 MB flash, 256 KB SRAM; and active current consumption while operating at 3.0V of just 20 µA/MHz, and in deep standby of 150 nA with real-time clock source and reset manager. As of this writing, Renesas indicates it’s engaging select customers through July 2019, with mass production in 4Q19. Read more about the R7F0E on the Renesas website.

GF-Dolphin 22FDX Turnkey Adaptive Body Bias Solutions Offer Big Energy Savings, Faster TTM. Design Kits Q2/19.

GlobalFoundries and Dolphin Integration are collaborating on the development of a series of adaptive body bias (ABB) solutions to improve the energy efficiency and reliability of SoCs on GF’s 22nm FD-SOI (22FDX®) process technology for a wide range of high-growth applications such as 5G, IoT and automotive. The goal of the IP is to accelerate energy-efficient SoC designs and push the boundaries of single-chip integration. The design kits with turnkey ABB solutions will be available starting in Q2 2019.

As part of the collaboration, Dolphin and GF are working together to develop a series of off-the-shelf ABB solutions for accelerating and easing body bias* implementation on SoC designs. ABB is a unique feature of FD-SOI that enables designers to leverage forward and reverse body bias techniques to dynamically compensate for process, supply voltage, temperature (PVT) variations and aging effects to achieve additional performance, power, area and cost improvements beyond those from scaling alone.

The ABB solutions in development by GF and Dolphin consist of self-contained IPs embedding the body bias voltage regulation, PVT and aging monitors and control loop as well as complete design methodologies to fully leverage the benefits of corner tightening. GF says its 22FDX technology offers the industry’s lowest static and dynamic power consumption. With automated transistor body biasing adjustment, Dolphin Integration can achieve up to 7x energy efficiency with power supply as low as 0.4V on 22FDX designs.

“We have been working with GF for more than two years on advanced and configurable power management IPs for low power and energy efficient applications,” said Philippe Berger, CEO of Dolphin Integration. “Through our ongoing collaboration with GF, we are focused on creating turnkey IP solutions that allow designers to realize the full benefit of FD-SOI for any SoC design in 22FDX.”

“In order to simplify our client designs and shorten their time-to-market, GF and our ecosystem partners are helping to pave the way to future performance standards in 5G, IoT and automotive,” said Mark Ireland, vice president of ecosystem partnerships at GF. “With the support of silicon IP providers like Dolphin Integration, new power, performance and reliability design infrastructures will be available to customers to fully leverage the benefits of GF’s 22FDX technology.”

As STMicroelectronics Fellow and Professor Andreia Cathelin has beautifully noted, “Body biasing is not an obligation. It’s an opportunity.” And GF/Dolphin clearly aim to make that opportunity a much easier and more powerful one to take advantage of.

~ ~ ~

*A note on terminology: the terms back bias and body bias are used interchangeably. Likewise the terms adaptive and dynamic when used in the FD-SOI context. Here is a quick explanation of how it works, from an ST paper from several years ago:

Back-biasing consists of applying a voltage just under the BOX of target transistors. Doing so changes the electrostatic control of the transistors and shifts their threshold voltage VT, to either get more drive current (hence higher performance) at the expense of increased leakage current (forward back-bias, FBB) or cut leakage current at the expense of reduced performance. While back-bias in planar FD is somewhat similar to body-bias that can be implemented in bulk CMOS technology, it offers a number of key advantages in terms of level and efficiency of the bias that can be applied. Back-biasing can be utilized in a dynamic way, on a block-by-block basis. It can be used to boost performance during the limited periods of time when maximum peak performance is required from that block. It can also be used to cut leakage during the periods of time when limited performance is not an issue. In other words, back-bias offers a new and efficient knob on the speed/power trade-off.

For another good discussion of body biasing in FD-SOI, you might want to check out The Return Of Body Biasing by Semiconductor Engineering’s Ann Steffora Mutschler from a couple years ago.

World 1st and It’s on 28nm FD-SOI: ST Sampling ePCM (eNVM) for Automotive MCUs

STMicroelectronics is now sampling 28nm FD-SOI microcontrollers (MCUs) with embedded non-volatile memory (eNVM) based on ePCM to alpha customers. Field trials meeting the requirements of automotive applications and full technology qualification are expected in 2020. These MCUs—the world’s first to use ePCM, which stands for embedded Phase-Change Memory—will target powertrain systems, advanced and secure gateways, safety/ADAS applications, and Vehicle Electrification. (Read the full press release here.)

A cross section of the embedded-PCM bitcell integrated in the 28nm FD-SOI technology shows the heater that quickly flips storage cells between crystalline and amorphous states. (Courtesy: STMicroelectronics)

“Having applied ST’s process, design, technology, and application expertise to ePCM, we’ve developed an innovative recipe that makes ST the very first to combine this non-volatile memory with 28nm FD-SOI for high-performance, low-power automotive microcontrollers,” said Marco Monti, President Automotive and Discrete Group, STMicroelectronics. “With samples already in some lead-customers’ hands, we’re confirming the outstanding temperature performance of ePCM and its ability to meet all automotive standards, further assuring our confidence in its market adoption and success.”

ePCM presents a solution to chip- and system-level challenges, meeting automotive MCU requirements for AEC-Q100 Grade 0, operating at temperature up to +165°C. In addition, ST says its technology assures firmware/data retention through high-temperature soldering reflow processes and immunity to radiation, for additional data safety.

Architecture and performance benchmark updates were presented the most recent IEDM (December 2018 in San Francisco) in a paper entitled Truly Innovative 28nm FDSOI Technology for Automotive Micro-Controller Applications embedding 16MB Phase Change Memory (F. Arnaud et al). As of this writing, the IEDM 2018 papers are not yet posted on the IEEE Xplore Digital Library site. However, the ppt that ST presented at the conference is available here.

For more in-depth information on ePCM, see the ST PCM page. To learn more about how it compares with competing technologies such as eMRAM, read Embedded Phase-Change Memory Emerges by Mark Lapedus of SemiEngineering. Papers describing other eNVM solutions on FD-SOI were also presented at IEDM 2018. Samsung’s is entitled Demonstration of Highly Manufacturable STT-MRAM Embedded in 28nm Logic (Y. J. Song et al). GlobalFoundries’ is entitled 22-nm FD-SOI Embedded MRAM Technology for Low-Power Automotive-Grade-1 MCU Applications (K. Lee et al).

2019 Greetings for the Start of an Exciting Year in SOI

Welcome to our first post for 2019 here at the SOI Consortium’s Advanced Substrate News. First and foremost, may we wish you and yours a safe, happy, healthy and prosperous year.

It should be a good year across the SOI ecosystem, with new products, players, IP, technologies and tools — and high volumes.

What’s new? Let’s start with the people, as the Consortium welcomes new team members. Jon Cheek of NXP will join Carlos Mazure as Executive Co-Director. He’ll be replacing ST’s Giorgio Cesana in that role – and goodness knows those are some big shoes to fill. Giorgio has given of his time and expertise so tirelessly over many years. He’ll of course still be a key resource for the SOI ecosystem, and though we’ll miss him here at the Consortium, we know he’ll be doing great things in SOI at ST. So a heartfelt thanks to Giorgio Cesana from all of us.

Jon Cheek has a long history in engineering management at companies that have been leading users of SOI: AMD, Freescale and now NXP. As such, he understands what companies need to design great products, and how the Consortium can help further build, promote, connect and support the ecosystem. The Consortium team also welcomes Jean-Eric Michallet of Leti, who’ll bring deep bizdev expertise and a keen sense of what it takes to reach further into the ecosystem. (Astute long-time ASN readers might remember his post from five years ago about 3D monolithic integration – now dubbed “Cool Cube” by Leti.) And finally, look to hear more from and about the Consortium, as our team is rounded out with the addition of the comm & marketing savvy of Erin Berard of Soitec.

In addition to new team members, the Consortium is very pleased to welcome new member Applied Materials. Though new to the Consortium, AMAT has a long history in the heart of SOI ecosystem – in fact they’ve been working with SOI wafer-leader Soitec for over 25 years. AMAT ion implanters are a key enabler to what became and is Soitec’s industry-leading Smart CutTM SOI wafer manufacturing process. And of course AMAT equipment is used to make virtually every chip in the world, so their breadth of vision as a consortium member is clearly a fabulous addition.

2019 will also be marked by the expansion of the highly successful SOI Academy series, the first of which was held this past fall in Shanghai. We’ll keep you posted as these and other Consortium events are announced throughout the year. In fact, 2019 marks a decade of (excellent!) SOI Consortium events events around the world: our first symposium was held back in 2009. Kicking off this year, save April 9th on your calendar for our Annual SOI Silicon Valley Symposium. Then watch this page for more events across the globe.

What will the year bring? On the product side, RF-SOI for 5G is of course super hot. Last summer, a SemiconductorEngineering headline proclaimed RF-SOI Wars Begin. And what we heard at the International RF-SOI Workshop last fall in Shanghai (presentations here) certainly confirmed that in the coming year the race will continue unabated.

Part 3 in SemiconductorEngineering’s “Experts at the Table” series on FD-SOI featured James Lamb of Brewer Science, Giorgio Cesana of ST, Olivier Vatel of Screen, and Carlos Mazure of Soitec. (Image courtesy: SemiconductorEngineering.com)

And for FD-SOI, you might want to read the SE series published over the last six months. The latest, published a couple of weeks ago looks at FD-SOI at the Edge. There are some great insights from SOI Consortium members there. In terms of products, too, there’s lots of activity.

Last summer, Samsung indicated they’d taped out over 60 products since they first began offering 28FDS three years ago. It’s a trend they see accelerating.  Full production of 18FDS is slated for this fall.

And also last summer GlobalFoundries indicated they had over 50 client designs on 22FDX. “We’re only just beginning,” said GF CEO Tom Caulfield at the time. “We have found a way to separate ourselves from the pack by emphasizing our differentiated FD-SOI roadmap and client-focused offerings that are poised to enable connected intelligence. ”

For its part, ST, as we learned at the last SOI Consortium Japan Workshop, has been doing FD-SOI for five years now. And while we don’t have number, we learned that some of those products are now in their second and third generations, and that some big FD-SOI chips coming out this year with embedded memory and RF, with especially good traction in mmWave, automotive and IoT.

So while the outlook for the overall industry is anyone’s guess for the coming year, the outlook for chips built on SOI technologies is very good indeed.

India & Industry 1st Next Gen TV SoCs on Samsung 28nm FD-SOI (Demo at CES ’19)

Going to CES? Check out the demo by Saankhya Labs. They just announced the launch of their latest next-gen digital terrestrial TV demodulator chipsets, SL3000 and SL4000. As reported by The Times of India and many other media outlets, the chipset is part of the Pruthvi-3 series, and it’s being manufactured on Samsung Foundry’s 28nm FD-SOI technology. Saankhya Labs says they’ll be sampling in the 1st Quarter of 2019.

[UPDATE 9 January 2019: Per a press release issued at CES, the chipset was launched by ONE Media 3.0, LLC, a subsidiary of Sinclair Broadcast Group,  and Saankhya Labs in collaboration with VeriSilicon and Samsung Foundry.  This announcement follows Sinclair Broadcast Group’s recent commitment to a nationwide roll-out of ATSC 3.0 (“Next Gen TV“) service and its past announcement to fund millions of chipsets giveaways for wireless operators. Sinclair is a major TV station operator in the US.

The PR goes on to say that the demodulator SoC was designed and developed by Saankhya Labs with ASIC turnkey design and manufacturing services from VeriSilicon, using Samsung Foundry’s state of the art 28FDS (its Fully Depleted SOI process technology), chosen for its unique low power capabilities offered by the back bias option.] 

(Courtesy: @SaankhyaLabs)

The Pruthvi-3 is an upgrade of Saankyha’s Software Defined Radio (SDR) chipsets for Direct to Mobile (DTM) applications, which address video bandwidth congestion and other challenges, including internet access for the vast populations of rural users found in India and worldwide. (DYK half the world still lacks access!?)

The company says the SL300x will be the industry’s first SDR-based DTV Demodulator that supports all the leading broadcast terrestrial, cable and satellite TV standards including the ATSC 3.0. The SOC is designed to deliver high performance and high throughput in static and multipath environments. A power-efficient, small footprint device, it targets DTV receiver applications such as digital televisions, set top boxes, home theatres and automotive entertainment systems. The SL400x – for mobile phones and tablets – is designed to be the most technologically advanced and highly-integrated single chip Mobile DTV Receiver in the industry. The full featured front-end SOC integrates UHF RF tuner, baseband DTV demodulator, FEC decoder, de-interleaver memory and Analog to Digital Converter (ADC) in a single chip.

Here is a brief YouTube video of the company’s CEO at the launch event, explaining why they see this chipset as a game changer.

India Times reports that there are already 5 million of the chipsets in pre-order to companies in the US and China.

FD-SOI Training: Over 220 Attend 1st SOI Academy in Shanghai

There were over 220 participants at the recent SOI Academy FD-SOI Training event organized in Shanghai. The event extended over two days, with the first day covering a basic introduction to the technology as well as the ecosystem worldwide and in China. The second day was hands-on professional training. Attendees got a comprehensive understanding of how to leverage the benefits and flexibility of FD-SOI design techniques for low-power chips including logic, mixed-signal/RF and analog blocks.

They had a great line-up of experts from whom to learn – check out the agenda here. There was also a follow-up press release (in Chinese) from SITRI here. There will be more of these SOI Academy events in cities across China in the year to come – we’ll keep you posted (and of course, keep checking back for news on the Consortium’s Events page).

SOI Academy ’18 keynotes by: Dr. Mark Ding, CEO, SITRI; Dr. Carlos Mazure, EVP Soitec and Chairman/Executive Director SOI Consortium. Dr. Julien Arcamone, EVP Leti. (Images courtesy: SITRI). Lower right: the hands-on FD-SOI training.

The two-day seminar and hands-on FD-SOI design training was (superbly!) co-organized by SITRI and Leti, with the support of the SOI Industry Consortium at the Jiading SIMIT campus outside of Shanghai.

Just to put this in perspective, SIMIT and SITRI are absolutely key players in China’s chip ecosystem. SIMIT is the Shanghai Institute of Microsystem and Information Technology, one of the most venerable institutes in the Chinese Academy of Science (CAS) and one of the world’s earliest pioneers in SOI. SITRI is the Shanghai Industrial μTechnology Research Institute, an international innovation center focused on globally accelerating innovation and commercialization of More-than-Moore for IoT. Both institutions are under the aegis of Dr. Xi Wang, Chairman of SITRI, Director General of SIMIT, Academician of CAS, and champion of all things SOI in China.

At this Shanghai event, the participants came from industry (including big companies, SMEs and startups) and technical institutions. In fact as well as attendees from Shanghai people voyaged from other cities such as Shenzhen and Chengdu.

The designers participating to the FD-SOI training day were all experienced in design and highly motivated in learning FD-SOI design, notes Carlos Mazure, Chairman & Executive Director of the SOI Industry Consortium, and Executive VP of Soitec. “This made it possible to dive into the specificities of FD-SOI,” he said, adding that, “The focus on RF was very timely.”

Day 1: Intro to FD-SOI

The first afternoon opening keynotes were made by SITRI CEO Dr. Mark Ding and Leti EVP Dr. Julien Arcamone. These were followed by overview talks by execs from Soitec, Verisilicon and GlobalFoundries.

After a lively networking break, three talks delved into FD-SOI technology. The first was by Professor Sorin Cristoloveanu, Laureate of the IEEE Andrew Grove Award and Director at the CNRS (the French National Center for Scientific Research – the largest governmental research organization in France and the largest fundamental science agency in Europe). He covered device physics and characterization techniques. This was followed by talks on the technology by Soitec Fellow Bich-Yen Nguygen, and by Dr. Christophe Tretz, IBM Sr. Engineer on product design methodology.

The day ended with a dinner, where Professor Cristoloveanu says enthusiastic technical discussions continued unabated (and continued even further in follow-up emails), lots of business cards were exchanged, and opportunities for further education were explored.

Day 2: Hands-on Training

The second day, designers got hands-on training from Leti experts using FD-SOI PDKs, first in the morning on digital, then in the afternoon on RF. Everyone loved the lively discussion and in-depth exchanges between the experts and the designers. They agreed that FD-SOI has important applications and differentiated competitive advantages for IoT, 5G, automotive, AI and other fields. At the end of the training, Leti and SITRI jointly issued SOI Academy certificates of completion to the designers.

Feedback from participants was very good. Some asked for further education and for hands-on testimonials from companies that are already designing and manufacturing products on FD-SOI.

“The participants were focused, motivated, involved, with good knowledge, which helped make the three hours of Digital training effective,” said Dr. Alexandre Valentian, Leti Sr. Expert, Digital Design. “The IT team was very helpful in setting up the training, the students accounts and the hardware infrastructure.”

“The training on Basics of FD-SOI RF circuit was a great success thanks to the efficiency of our Chinese partners and also thanks to the enthusiasm and the good level of our trainees. As senior Expert of CEA Leti I was really impressed by the professionalism of the organization team. For all these reasons, I’m very glad to have had the opportunity to contribute to the 2018 SOI Academy,” said Dr. Baudouin Martineau, Leti Sr. Expert, RFIC Design & Technologies.

“The professionalism, efficiency and enthusiasm of our Chinese partners and the level and technical relevance of all trainees made the training on Basics of FD-SOI RF circuit a great success and fruitful experience,” added Frédéric Hameau, Sr. RF Research Engineer, Leti Project Leader, Architecture, IC Design & Embedded Software Division, RF Architectures and ICs Laboratory. “It was a pleasure to get the opportunity to be part of this first edition of SOI academy 2018.”

The organizers would like to thank the sponsors, including: the SOI Consortium and its members Soitec, VeriSilicon, GlobalFoundries, Simgui and Cadence, as well as Mentor, ProPlus and other companies and institutions in China and worldwide. Dr. Mazure notes that special recognition must go to Dr. Julien Arcamone, EVP, Leti-CEA and to Qing Wang-Bousquet, SITRI representative, for the perfect and smooth organization, and to the Leti instructors, who are international experts and highly committed.

“As one of the main initiators and organizers of the 2018 SOI Academy, I wanted to personally thank all of you for your respective contribution to this first edition of the SOI Academy,” concludes Dr. Arcamone. “Undoubtedly, it was a great success, very well organized and fluid and we can be proud of that.”

EuroSOI-ULIS (April 2019, Grenoble) + Free FD-SOI RF Technology Workshop for 5G

If you’ve never been, you should put it on your list. EuroSOI is one of those seminal conferences where you get a front-row seat to emerging technologies. It provides an interactive forum for scientists and engineers working in the field of new materials and advanced nanoscale devices. In fact, some of the leading technologies enabled by SOI that are now in the mainstream got their start at this conference. Within a few years of being presented here, the best work continues to evolve and star in the “big” conferences like IEDM and VLSI.

The list of luminaries on the steering and technical committees is a veritable who’s who of the SOI research ecosystem, including two winners of the IEEE Andrew Grove Award: Technical Chair Jean-Pierre Colinge and Sorin Cristoloveanu. So, if you want to get in on the ground floor of next-gen SOI, or just get a look at the early stages of the pipeline, this is a great place to do it.

One of the key objectives is to promote collaboration and partnership between players in academia, research and industry. As such it provides opportunities for cross-fertilization across materials, devices and design. The networking is excellent, and the gala dinner is always an affair to remember.

This year, papers in the following areas have been solicited:

  • Advanced SOI materials and wafers. Physical mechanisms and innovative SOI-like devices
  • New channel materials for CMOS: strained Si, strained SOI, SiGe, GeOI, III-V and high mobility materials on insulator; carbon nanotubes; graphene and other two-dimensional materials.
  • Properties of ultra-thin films and buried oxides, defects, interface quality. Thin gate dielectrics: high-κ materials for switches and memory.
  • Nanometer scale devices: technology, characterization techniques and evaluation metrics for high performance, low power, low standby power, high frequency and memory applications.
  • Alternative transistor architectures including FDSOI, DGSOI, FinFET, MuGFET, vertical MOSFET, Nanowires, FeFET and Tunnel FET, MEMS/NEMS, Beyond-CMOS nanoelectronic devices.
  • New functionalities in silicon-compatible nanostructures and innovative devices representing the More than Moore domain, nanoelectronic sensors, biosensor devices, energy harvesting devices, RF devices, imagers, etc.
  • CMOS scaling perspectives; device/circuit level performance evaluation; switches and memory scaling. Three-dimensional integration of devices and circuits, heterogeneous integration.
  • Transport phenomena, compact modeling, device simulation, front- and back-end process simulation.
  • Advanced test structures and characterization techniques, parameter extraction, reliability and variability assessment techniques for new materials and novel devices.
  • Emerging memory devices.

Accepted papers appear in the conference proceedings in the IEEE Xplore® digital library. The authors of the best papers are invited to submit a longer version for publication in a special issue of Solid-State Electronics. A best paper award will be attributed to the best paper by the SiNANO institute.

EuroSOI-ULIS kicks off a full week of activities in Grenoble. The day after the conference, Incize and Soitec are sponsoring an excellent, free workshop on FD-SOI RF technologies for 5G: materials, devices, circuits and performance. The’ve got a terrific line-up of presentations planned.

And towards the end of the week, there are other important satellite events. The 1st open IRDS International Roadmap for Devices and Systems European Conference (April 4th, 2019) is jointly organized by the USA, Japan and EU, and sponsored by the IEEE and SiNANO Institute. Then the week finishes out with the IEEE ICRC International Conference on Rebooting Computing (April 5th, 2019).

Grenoble the first week of April 2019 is clearly the place to be.

Now, We Ramp! Panelists at Japan Workshop See Good Opps for FD-SOI, RF-SOI

Lots of great information came out of the two days of workshops in Japan recently organized by the SOI Consortium. Some of the presentations are now posted on the consortium website (get them here).

The first day (held in Yokohama and sponsored by Silvaco) focused on FD-SOI and RF-SOI design. The second day (held at U. Tokyo) focused on More than Moore (especially silicon photonics, MEMS & sensors), and the SOI manufacturing ecosystem.

The 1st day panel discussion was so interesting we’ll give it a post of its own, then follow up with round-ups of the presentations from both days.

And now to ramp!

The morning panel discussion on end-user deployment for FD and RF-SOI was moderated by SOI Consortium Executive Director Giorgio Cesana. GF’s CTO Subi Kengeri led off saying that that 2017 had been the year of FD-SOI adoption. Samsung Director Adam Lee noted that in the beginning nobody believed it would get traction, but now everybody does, and Samsung is commercializing it: chips coming out this year will ramp in volume in 2019.

Panel on FD-SOI and RF-SOI end-user deployment, SOI Workshop Japan, 2018. Giorgio Cesana, SOI Consortium Executive Director, Moderator; John Carey, ST Director; Adam Lee, Samsung Director; Subramani Kengeri, GF CTO; Wayne Dai, VeriSilicon CEO; Mostafa Emam, Incize CEO. (Courtesy: SOI Consortium)

VeriSilicon CEO Wayne Dai said he sees great potential in IoT, where the volumes are high but fragmented. In IoT, he said, you need RF, but you really only need very high performance about 20% of the time, which is a perfect fit for FD-SOI.

ST Director John Carey noted that ST’s been using FD-SOI since 2014. They’ve fabbed products for cryptocurrency and infrastructure. Now in their second and third generations of designing with it, they’ve got some big FD-SOI chips coming out next year with embedded memory and RF. He sees it being particularly successful in mmWave, automotive and IoT.

The conversation then shifted to RF-SOI. Mostofa Emam, CEO of Incize, explained that since RF-SOI is already in every smart phone, it’s in a different situation from FD-SOI. The emphasis here is now on adding more blocks. “RF is an art,” he said. “It takes an artist. You need talented artists and tools.” One of the biggest challenges for fabs that are newcomers is models – not just at the transistor level, but also at the substrate level. The big players have addressed this, but Incize is working to support more foundries with new, innovative approaches, and helping them develop robust PDKs. The industry needs more good RF designers as well as better RF design flow, he concluded.

Coming back to FD-SOI, Cesana asked about non-volatile memory (NVM). Samsung’s Lee said they’ve already got NVM options including eMRAM for 28nm, and customers are now requesting eMRAM PDKs for the next node (18FDS). ST’s Kengeri added eNVM is important for FD-SOI, especially since flash is not scaling. While there are lots of options, MRAM gives you all the value, and in FD-SOI it only adds three more mask steps, so cost savings are maintained.

With respect to local computing for AI with FD-SOI, everyone agreed on the importance of the edge. In addition to RF, FD-SOI gives you density even at 28nm, explained Carey. You can manually control power with back biasing, so you get something very flexible, especially for NB-IoT applications where the battery will have to last for 10 years. In fact Kengeri sees FD-SOI as enabling fog/edge computing.

5G – What’s First?

The next question was about 5G: which applications would we be seeing first, and how does FD-SOI help? Lee said Samsung’s seeing it for apps up to 10GHz as well as mmWave. Customers are telling them they want FD-SOI for technical reasons.

Kengeri expanded on that point, saying it comes down to fundamental physics: gate resistance, capacitance, mismatch. FD-SOI has lower Vmin and better Fmax compared to FinFETs, and that’s what tier-one players want.

Carey brought it back to RF-SOI (noting that ST’s introducing a 45nm version), which supports a large number of elements and increased complexity with smaller power budgets. Emam then asked the foundry guys about mmWave. Substrates won’t be the bottleneck he said, so what’s the FD-SOI/mmWave roadmap? Kengeri responded that GF’s ready. Lee said Samsung is also ready, and you’d see it next year on handsets. Samsung has engaged with customers on 30GHz for the middle of next year, he added: it’s qualified. Carey said ST sees it first in consumer premises equipment that’s connected by satellite.

The right enabler

Cesana then asked about image sensor processors (ISPs), noting that analyst Handel Jones has said this is a big opportunity for FD-SOI. You can do 3D integration with sensors, but heat makes noise, so you need technology that decreases heat production and doesn’t give you hotspots (which would be visible in the image). Kengeri pointed to challenges in power density, thermal envelopes and the RTS (random telegraph noise signal). Although there are a lot of options, FD-SOI plays well for thermals and noise, so GF sees a good opportunity here. Dai added that the industry needs volume applications for FD-SOI, and ISPs need to bring more logic closer to the camera. And he concurred that you need FD-SOI for the thermals: it’s very important.

In closing, Dai noted that as a design house, “We walk on two legs: FinFETs and FD-SOI.” 28, 22, 18 and 12nm FD-SOI all enable differentiation. In particular, you need something between 20nm and 7nm: FD-SOI is here. Asked about Japan in particular, Dai said beyond automotive he saw lots of potential in ULP for AVR. Kengeri added that for any applications besides performance-at-any-cost, FD-SOI is the right enabler.