Tag Archive Soitec

ByAdele Hars

Chengdu Conference Indicates FD-SOI Will Play Major Role in China/Automotive

FD-SOI was a very important topic during the recent Mount Qingcheng China IC Ecosystem Forum. To situate things, Mount Qingcheng, with its lush hills and waterways, is located just outside of Chengdu. That of course is where GlobalFoundries is building its new fab, which will be the first in China to run FD-SOI. Chengdu is also a key city in China’s automotive electronics landscape.

(Image Courtesy: VeriSilicon)

The theme of the forum was Building a Smart Automotive Electronics Industry Chain. Over 260 decision-makers from government, academia and industry attended – and the SOI Consortium had a significant presence. The event was chaired by Wayne Dai, CEO/Founder of consortium member VeriSilicon, and tireless champion of the the FD-SOI ecosystem in China and worldwide. Morning keynotes were given by: Carlos Mazure, Soitec CTO and SOI Consortium Executive Co-Director; Mark Granger, GF’s VP of Automotive Product Line Management; and Tony King-Smith, Executive Advisor at AImotive, a GF 22FDX customer.

BTW, transcripts of all the talks are available through Gasgoo, China’s largest automotive B2B marketplace. You can click here to access them. (They’re in Chinese – but you can open them in the language of your choice using the major translation websites.)

Chengdu Officials Affirm Support for FD-SOI

Fan Yi, Deputy Mayor of Chengdu, spoke extensively of FD-SOI in his keynote on the importance of rapidly developing smart cars.

He heralded the “spectacular” new GlobalFoundries fab there. Following a meeting with the company’s top brass the day before, he affirmed GF’s confidence in their investment. There is a solid roadmap for FD-SOI, he noted, and efforts are underway to accelerate the move into production and expand education and training. He cited the benefits of FD-SOI for the entire supply chain, from design through package and test, raising the level of the entire IC industry to new heights. The government, he said, attaches great importance to this enterprise. Their thinking regarding intelligent transport in China is integrated with the overall approach to smart cities.

SOI Consortium Leads Industry Keynotes

Wayne Dai, VeriSilicon Founder and CEO (Photo courtesy VeriSilicon)

In his opening remarks, Wayne Dai emphasized the need for China to seize the advantage in the next round of development opportunities in the automotive electronics industry. This year’s Qingcheng forum, he noted, brought together key representatives from across the supply chain, from of the highest to the deepest reaches of the smart car electronics industry, and across markets, technologies, solutions, industrial ecosystem, standards and regulations.

In his talk on how FD-SOI is boosting the accelerated development of automotive electronics, Carlos Mazure presented the SOI Industry Consortium. He noted that the Consortium promotes mutual understanding and development across the ecosystem. SOI is already present throughout automotive applications, he noted. There are currently about 100mm2 of SOI per car, in such diverse areas power systems, transmissions, entertainment, in-vehicle networking and more. SOI will experience especially high growth in electrification, information/entertainment, networking, 5G, AI/edge computing and ADAS. He then went on to give some history and an extensive overview of the major trends and highlights we’ve seen over recent years. He finished by giving examples of convergence across the supply chain with IC manufacturers working with automakers to lower power, increase processor performance and advance 5G.

Carlos Mazure, Soitec CTO and SOI Consortium Executive Co-Director; Tony King-Smith, Executive Advisor at AImotive and Mark Granger, GF’s VP of Automotive Product Line Management (Photo courtesy VeriSilicon)

GF’s Mark Granger addressed the rapid development of automotive electronics. In certain areas, he said, he sees growth rates of over 20%. They are working on building the Chengdu ecosystem, especially for design, and in cooperation with the rest of the supply chain. Furthermore, he reminded the audience, when you talk about cars, travel implies that you also talk about IoT as well as things like infotainment and integrated radar ICs. In addition to cost and power efficiencies, the AEC-Q100 standard for IC reliability in automotive applications is also pushing designers to turn to FD-SOI. In the GF meeting with Chengdu government officials (referenced above in deputy mayor Fan Yi’s talk), he too confirmed their support of FD-SOI as a key technology for China. GF is currently cooperating with about 75 automotive partners, he said, and the company is looking to increase cooperation with partners in the Chengdu region.

Tony King-Smith talked about the 22FDX test chip AImotive is doing with Verisilicon and GF. In case you missed it, in June 2017 AImotive announced its AI-optimized hardware IP was available to global chip manufacturers for license. AiWare is built from the ground up for running neural networks, and the company says it is up to 20 times more power efficient than other leading AI acceleration hardware solutions on the market. In the same announcement, they revealed that VeriSilicon would be the first to integrate aiWare into a chip design,and that aiWare-based test chips would be fabricated on GF’s 22FDX. The chip is expected to debut this year.

While the afternoon agenda was not specific to FD-SOI, it did focus on the “smart cockpit” and “intelligent driving”, with talks by nine leading players in China’s automotive IC and investment communities.

~ ~ ~

Note: Many thanks to the folks at VeriSilicon, who wrote up this event for their WeChat feed, and shared photos with us here at ASN.

ByAdele Hars

Share This! Terrific Guide to All Things FD-SOI in GSA Newsletter

Manuel Sellier, Product Marketing Manager at Soitec

Manuel Sellier, Product Marketing Manager at Soitec for the FD-SOI (and some other) SOI product lines has written an absolutely terrific primer entitled FD-SOI: A technology setting new standards for IoT, automotive and mobile connectivity applications. It’s in the August edition of the GSA Forum (the GSA is the Global Semiconductor Alliance).

If you know anyone who needs to quickly glean an understanding of FD-SOI that is both in-depth and broad, you’ll want to share this piece with them right away.

Before joining Soitec, Sellier was a chip designer at ST, where he gained deep experience designing FD-SOI chips. What’s more, he holds a Ph.D. in the modeling and circuit simulation of advanced MOS transistors, including FD-SOI and FinFETs. So, he really knows his stuff. But don’t worry that this might be too technical: Sellier’s writing is thoroughly accessible (and engaging!) for anyone in the industry.

He starts with the wafer history, then quickly moves on to the features from the designer’s standpoint. And he puts it all in a business perspective. I can’t recommend this piece enough – even if you think you know everything already yourself, you’re sure to learn something new.

ByAdele Hars

TowerJazz Ramps 300mm 65nm RF-SOI, extends long-term partnership with Soitec

Specialty foundry TowerJazz is ramping a 65nm version of its RF-SOI process on 300mm wafers at Fab 7 in Uozu, Japan. To support the ramp, the company has signed a contract with long-term partner, Soitec, guaranteeing a supply of tens of thousands of 300mm SOI silicon wafers, securing wafer prices for the next years and ensuring supply to its customers, despite a tight SOI wafer market.

The 300mm 65nm RF-SOI process will be offered at the Uozu, Japan fab, which is operated by the TowerJazz Panasonic Semiconductor Company (TPSCo). (Photo courtesy: TowerJazz)

Five of TJ’s seven fabs do RF-SOI. LNA (low-noise amplifers) are a big market driver, and with RF-SOI they can integrate the LNA with the switch, CEO Russell Ellwanter said in his lead keynote at the SOI Consortium’s 5th International RF-SOI Workshop in Shanghai (spring, 2018). BTW, that was in fact a very inspirational talk about Value Creation, and the importance of treating your suppliers with respect. He credited his company’s close relationship with RF-SOI wafer-supplier Soitec for TJ’s claim to the world’s best linearity.

“We are delighted to see the strong adoption of 300mm RF SOI through this large capacity and supply agreement with TowerJazz to augment our already significant 200mm RF-SOI partnership,” said Soitec CEO Paul Boudre. “TowerJazz was the first foundry to ramp our RFeSI products to high volume production in 200mm and continues as one of the industry leaders in innovation in this exciting RF market with advanced and differentiated offerings.”

According to the TJ press release (you can read it here), with its best in class metrics the TowerJazz 65nm RF-SOI process enables the combination of low insertion loss and high power handling RF switches with options for high-performance low-noise amplifiers as well as digital integration. The process can reduce losses in an RF switch improving battery life and boosting data rates in handsets and IoT terminals.

It’s a high-growth market, to be sure. Market researchers Mobile Experts predict that the mobile RF front-end market will reach $22 billion in 2022 from an estimated $16 billion in 2018. TowerJazz says its breakthrough RF SOI technology continues to support this high-growth market and is well-poised to take advantage of next-generation 5G standards, which will boost data rates and provide further content growth opportunities in the coming years.

Customers are already getting into position. For example, Maxscend (WuXi, China), a provider of RF components and IoT integrated circuits, is ramping in this new technology. “We chose TowerJazz for its advanced technology capabilities and its ability to deliver in high volume while continuously innovating with a strong roadmap. We specifically selected its 300mm 65nm RF SOI platform for our next-generation product line due to its superior performance, enabling low insertion loss and high power handling,” said Maxscend CEO Zhihan Xu.

As longtime ASN readers will know, we’ve been covering the evolutions of TJ’s RF-SOI platforms since the beginning of the decade. It’s worth noting, too, that beyond RF, TowerJazz also offers foundry customers other SOI-based processes, such as the new 0.18μm BCD SOI, a 200V SOI technology platform (announced in 2017, press release here) for motor drivers, industrial tools, electric vehicles and more. The previous generation 0.18μm SOI for automotive power management also offers exceptional area savings and is well-suited for high temperature operation. Back in 2014, here at ASN we did a great interview with TJ SVP Dr. Marco Racanelli about when and why they use SOI – and while processes have advanced, the basic drivers are still there, so it’s a still a good read.

And finally, designers will want to know that the TJ Multi-Project Wafer (MPW) Shuttle Program offers the 65nm RF-SOI process, as well as other SOI-based processes. See the website for scheduling and details.

ByAdele Hars

Leti and Soitec launch new Substrate Innovation Center – all partners welcome!

Leti and Soitec have announced a new collaboration and five-year partnership agreement to drive the R&D of advanced engineered substrates, including SOI and beyond. This agreement brings the traditional Leti-Soitec partnership to a whole new dimension and includes the launch of a world-class prototyping hub associating equipment partners to pioneer with new materials, The Substrate Innovation Center will feature access to shared Leti-Soitec expertise around a focused pilot line. Key benefits for partners include access to early exploratory sampling and prototyping, collaborative analysis, and early learning at the substrate level, eventually leading to streamlined product viability and roadmap planning at the system level.

CEOs Emmanuel Sabonnadière (Leti) and Paul Boudre (Soitec) announcing the new Substrate Innovation Center during Semicon West ’18. (Image courtesy: Leti)

Leading chip makers and foundries worldwide use Soitec products to manufacture chips for consumer applications targeting performance, connectivity, and efficiency with extremely low energy consumption. Applications include smart phones, data centers, automotive, imagers, and medical and industrial equipment, but this list is always growing, along with the need for flexibility to explore new applications starting at the substrate level. At the Substrate Innovation Center, located on Leti’s campus, Leti and Soitec engineers will explore and develop innovative substrate features, expanding to new fields and applications with a special focus on 4G/5G connectivity, artificial intelligence, sensors and display, automotive, photonics, and edge computing.

“Material innovation and substrate engineering make entire new horizons possible. The Substrate Innovation Center will unleash the power of substrate R&D collaboration beyond the typical product road maps, beyond the typical constraints,” said Paul Boudre, Soitec CEO. “The Substrate Innovation Center is a one-of-a-kind opportunity open to all industry partners within the semiconductor value chain.”

Whereas a typical manufacturing facility has limited flexibility to try new solutions and cannot afford to take risks with prototyping, the mission of the Substrate Innovation Center is to become the world’s preferred hub for evaluating and designing engineered substrate solutions to address the future needs of the industry, inclusive of all the key players, from compound suppliers to product designers. Using state of the art, quality-controlled clean room facilities, and the latest industry-grade equipment and materials, Leti and Soitec engineers will conduct testing and evaluation at all levels of advanced substrate R&D.

“Leti and Soitec’s collaboration on SOI and differentiated materials, which extends back to Soitec’s launch in 1992, has produced innovative technologies that are vital to a wide range of consumer and industrial products and components,” said Emmanuel Sabonnadière, Leti CEO. “This new common hub at Leti’s campus marks the next step in this ongoing partnership. By jointly working with foundries, fabless, and system companies, we provide our partners with a strong edge for their future products.”

ByAdele Hars

Foundries Expand Rapidly to Meet Soaring RF-SOI Demand (SemiEngineering)

“GlobalFoundries, TowerJazz, TSMC and UMC are expanding or bringing up RF SOI processes in 300mm fabs in an apparent race to garner the first wave of RF business for 5G, the next-generation wireless standard,” writes Mark Lapedus of Semiconductor Engineering. His recent piece, RF-SOI Wars Begin, explains why demand across the supply chain is currently tight.

Rest assured, the supply situation is being addressed fast. By next year, 300mm-based RF-SOI manufacturing (vs. 200mm) will increase from 5% to 20%. But with insatiable end-user demand for greater throughput, overall RF-SOI device demand is increasing in the double-digit range, so 200mm-based manufacturing is also expanding fast.

The front-end modules in all smartphones are built on Soitec’s RF-SOI wafer technology. The most advanced, for LTE/LTE-A, are built on Soitec’s RFeSI-SOI wafers, which have four layers to meet the demands of devices with high linearity requirements. (Courtesy: Soitec)

SOI wafer manufacturer Soitec has 70% of the RF-SOI wafer market share. The other RF-SOI wafer manufacturers – Shin-Etsu, GlobalWafers and Simgui – all use Soitec’s RF-SOI wafer manufacturing technology.

This is an excellent, comprehensive piece, that clearly explains the complexities of the markets, the devices, the manufacturing and the supply chain. It’s a highly recommended read.

BTW, the SOI Consortium is organizing a 4G/5G SOI supply chain workshop during Semicon West (July ’18). Sign up or get more information on that under the Events tab here on the consortium website.

Of course, here at ASN, we’ve been covering RF-SOI for over a decade. You can use our RF-SOI tag to access most of the pieces we’ve done over the years.

ByAdele Hars

Foundries Ramp FD-SOI, VLSI Survey Shows Why – More Highlights from the Silicon Valley SOI Symposium (Part 2)

Good news: there are far fewer bigoted extremists out there when it comes to FD-SOI vs. FinFETs. People want the best technology for their application. It’s that simple. That’s a key piece of news from the updated survey by Dan Hutcheson, CEO of VLSI Research, which he presented in the afternoon session of the SOI Consortium’s 2018 SOI Symposium in Silicon Valley

The afternoon then featured presentations by foundry partners, which I’ll cover here.

Also in the afternoon were presentations by wafer-maker Simgui, some innovative start-ups leveraging FD-SOI for custom SoCs and the final panel discussion. I’ll cover those in Part 3 of this series.

BTW, if somehow you missed my coverage of the morning sessions about very cool new products and projects from NXP, Sony, Audi, Airbus and Andes Technology, be sure to click here to read it.

The presentations are starting to be posted on the SOI Consortium Events page – but some won’t be. Either way, I’ll cover them here.

VLSI Research

A couple years ago at the annual SOI Symposium in Silicon Valley, Dan Hutcheson presented results of a survey he did (ASN covered it – you can still read about it here). At the 2018 event, he presented an update, which is now posted. You can get it here.

The FD-SOI roadmap and IP availability are no longer issues for decision makers, he found. The 14nm branch – do you go FinFET or FD-SOI? – is gone. “Fins and FD are complementary,” he observed. Most people said they’d consider using both and running two roadmaps, choosing whichever technology is appropriate to a given design.

(Courtesy: VLSI Research, SOI Consortium)

From a transistor viewpoint, the top reasons to choose FD-SOI is that it’s better for analog and has lower leakage/parastics. It’s perceived as better for complex, high mixed-signal SoCs, and especially for RF and sensor integration. In fact, people see RF as the new mixed-signal, wherein FD-SOI is uniquely positioned for 5G and mmWave.

From a business viewpoint, FD-SOI is perceived to have real advantages. In particular, FD-SOI wins when it comes to keeping down design costs, manufacturing costs and time-to-market. IoT is still the hottest target market for FD-SOI, to which he adds high growth expected in automotive and medical.

Samsung

With 20 tape-outs in 2018, Samsung is seeing an acceleration in its FD-SOI business. “The trend is healthy,” said Hong Hoa, SVP of the company’s foundry business. FD-SOI, he continued, is on a “differentiation path.”

Samsung’s 28nm FD-SOI process, called 28FDS is at full maturity with very strong yields. They’re seeing more customers and a wider range of applications. The design infrastructure, silicon-verified IP and methodologies are also all mature. They have optimal implementation and verification guidelines for body bias design, a body bias memory usage guide, and a body bias generator integration guide. The process supports Grade 1 automotive, and will be qualified for Grade 2 in a few weeks.

FD-SOI, Hoa reminded the audience, offers superior RF performance compared to both planar bulk and 14nm FinFET. The Samsung strategy is to first provide a base for for the FD-SOI process, then add RF and eMRAM. The base for 28nm was done in 2016; they added RF in 2017 and eMRAM this year.

The Samsung platform for IoT applications integrates both RF and eMRAM to support multi-function needs in a single platform. Lead customers are already working with eMRAM in their designs, he added. (BTW, Samsung has a really nice video explaining their eMRAM offering – you can see it on YouTube here.)

The basic PDK for the Samsung 18nm FD-SOI process (18FDS) will be available in September 2018, with full production slated for fall of 2019. It will deliver a 24% increase in performance, a 38% decrease in power, and a 35% decrease in area for logic. RF for the 18FDSplatform will be ready by the end of this year, and eMRAM beginning in 2019.

GlobalFoundries

With design wins from 36 customers underway, 12 of which are taping out in 22FDX (GF’s 22nm FD-SOI process) this year, the market has validated FDX for differentiation, said GF SVP Dr. Bami Bastani. And indeed, designers are using it for a wide array of applications across North America, Europe, Asia/Pacific and Japan.

Customers in the North America are designing in 22FDX for NB-IoT, industrial, RF/analog, mobile, network switches and cryptocurrency applications. In Europe, it’s more or less the same plus automotive/mmWave, optical transmission, wireless BTS and AI/ML. In Asia Pacific/Japan the mix is similar to Europe.

Bastani sees the three big enablers as the the strengths of the roadmap, the ecosystem and multi-sourcing from Dresden and Chengdu (where they’re already equipping the cleanrooms). He also tipped his hat in acknowledgment to the partnership with FD-SOI wafer supplier Soitec, noting that they have gone the extra mile to match GF’s requirements.

So that was the first part of a great afternoon.  As mentioned above, my next post (part 3) will cover a very informative presentation by wafer-maker Simgui on the markets in China, plus talks by some innovative start-ups leveraging FD-SOI for custom SoCs and the final panel discussion.

 

ByAdele Hars

SEMI Honors RF-SOI Innovators Raskin & Aspar

RF-SOI innovators Jean-Pierre Raskin of UCL and Bernard Aspar of Soitec changed the course for key RF chips. The industry has long recognized their contributions: their solution for “trap-rich” RF-SOI wafers is now the starting point to virtually every FEM in every smart phone on the planet (really!). And of course here at ASN we’ve been following their work for over a decade. Now more accolades are coming in.

The latest is the 2017 European SEMI Award, which was given at ISS Europe 2018 for “…their seminal work with radio frequency silicon-on-insulator (RF-SOI) substrates” (read the press release here). As SEMI notes, the “…award winners’ pioneering research and collaboration with academia and industry led to major advances in RF switches and ushered RF-SOI technology from concept to worldwide adoption.” Aspar and Raskin were nominated and selected by their peers within the international semiconductor community.

Bernard Aspar, Executive Vice President, Communication & Power BU at Soitec
Aspar founded CEA-Leti spinoff Tracit Technologies in 2003. He was appointed senior vice president of the Tracit Division (now the Communication & Power business unit) when Soitec acquired Tracit in 2006. He has more than 15 years of experience in direct wafer-bonding and layer transfer. Aspar has filed more than 35 patents and co-authored some 100 scientific articles. He holds engineering and Ph.D. degrees in materials sciences and a master’s degree in microelectronics from the University of Montpellier, France.

Jean-Pierre Raskin, professor, Université catholique de Louvain (UCL)
Raskin contributed to pioneering scientific studies demonstrating that silicon-based MOS technology could enable affordable, high-quality mobile devices. His findings led to the advent of RF-SOI technology and today impact the global microelectronics industry. He is an IEEE Senior Member, EuMA Associate Member and Member of the Research Center in Micro and Nanoscopic Materials and Electronic Devices of the Université catholique de Louvain, where he has been a full professor since 2007. He is author or co-author of more than 350 scientific articles.

Their advanced RF-SOI technology is now behind a wide range of applications and systems in areas including mobile devices, satellite communications, IoT, automotive radar and aerospace.

If you want to better understand all this, a few years ago UCL and Soitec teams contributed an excellent article to ASN. It clearly explains how and why these new substrates came to be. You can still read it here. (Or if you’re still a little confused about RF-SOI vs. RF on FD-SOI, here’s a piece we did back in 2015 that explains the basics.)

ByAdele Hars

Does China Mobile Care About RF-SOI for 5G? Oh Yes.

China Mobile is the world’s largest* telco. So when Danni Song, one of the company’s high-level project managers presented at the SOI Consortium’s 5th International RF-SOI Workshop in Shanghai, you can bet people listened. With each new slide, a glowing sea of cell phone cameras rose over the heads of the audience in the huge, packed ballroom.

(Photo courtesy: SOI Consortium, Simgui)

Over the last month, there’s been a lot more coverage of 5G in the press (especially after the recent Mobile World Congress (MWC) – check out Junko Yoshida’s EETimes piece for example). For ASN readers who want to know more about 5G and RF-SOI in China, here’s a reminder that Song’s presentation, and many of the others given by leading companies at the RF-SOI Workshop last fall, are now posted on and freely available the Consortium website Events page. Click here for the listing and links.

The theme of the workshop was IoT, mobile, 5G connectivity, and mmW. As Dr. Xi Wang, Director General of SIMIT/CAS (the Shanghai Institute of Microsystem & Information Technology in the Chinese Academy of Sciences), said in his opening keynote, China is strong in RF-SOI. RF-SOI will be growing at a CAGR of over 15% for the next five years, and China has production, design, wafer manufacturing and good momentum. “We will make a great contribution to the whole IC industry,” he predicted.

Of note, too, Russell Ellwanter, CEO of TowerJazz, gave what turned out to be a very inspirational keynote about Value Creation, and the importance of treating your suppliers with respect. He credits his company’s close relationship with RF-SOI wafer-supplier Soitec for TJ’s claim to the world’s best linearity. Five of their seven fabs do RF-SOI. LNA (low-noise amplifers) are a big market driver, and with RF-SOI they can integrate the LNA with the switch.

Here are some more highlights from the day – but by all means check out the presentations for details. (You can click on the illustrations to see them in full screen.)

China Mobile

In her presentation, Embrace a Brand New Cooperation in 5G Era, Song asked where RF-SOI could help in her wish list. Could it increase integration and decrease cost and power consumption? Can it help improve NB-IoT device performance? The supply chain needs to come back around into a circle, so that the telcos are connected to and get insights from the wafer substrate providers, she said.

(Courtesy: China Mobile, SOI Consortium)

China Mobile has a 5G Innovation Center, and has established test labs in 8 cities. And the government has announced a 5G launch in 2020, with pre-commercial trials now going into 20 cities. So she was at the RF-SOI Workshop as much to listen and learn as to share China Mobile’s vision.

Sony

(Courtesy: SOI Consortium and Sony)

The presentation by Kidetoshi Kawasaki, GM of Sony Semiconductor Solutions, focused on antenna tuning, which he said is one of the fastest growing things in cell phones. Antenna Tuning Progress & SOI Single Chip Integration for 4G/5G UE (note that UE = user equipment) looks at antenna aggregation, and why it is important for carrier aggregation (CA) and MIMO. Sony has developed an SOI-based next-gen process for 5G integrating passive components. That’s why RF-SOI is important and will be continued to be used in the mobile market, he said.

GlobalFoundries

GF has developed demo vehicles to help customers, said Sr. Director of the RF Business Unit, Peter Rabbeni. (Over the years they’ve shipped over 32 billion RF-SOI devices, btw.) In his presentation, RF-SOI: Delivering Performance & Integration for the Next Generation of Mobile,he noted that RF is becoming more complex than digital. As a result there is a need to integrate to help reduce cost: this is a direct correlation to the standards that are driving complexity. At the same time, performance requirements are increasing, so the challenge is driving increased performance at the same or lower cost than previous generations of products.

(Courtesy: GlobalFoundries and SOI Consortium)

To meet 4G/LTE and 5G’s evolving performance demands, GF has recently introduced two new RF-SOI platforms, which he detailed in the presentation. 8SW enables increased integration of front-end modules (FEMs), while 45RFSOI is for mmWave FEMs. (In a separate presentation, IDDO-IC CEO Denis Masliah presented a Differential Complementary Millimeter Wave Power Amplifier for 5G using 45RFSOI process, which is currently being fabbed by GF.)

RF-SOI Wafer Suppliers

The two leading RF-SOI wafer suppliers, Soitec and partner Simgui, both gave excellent presentations. Though Soitec EVP Bernard Aspar’s presentation Engineered Substrates as Foundation of Innovation in RF is not posted, he made some important points. Up til now, RF-SOI has mainly been about switches and tuners, he said, but there are other opportunities that offer the potential for huge growth. The full supply chain needs to be prepared, he said, and suppliers need to understand each other. Each technology requires the right substrate – and even as we move into sub-6GHz 5G, there is still work to be done in 4G. In fact Soitec is now offering services to help customers better understand new substrate options.

(Courtesy: Simgui, SOI Consortium)

Soitec’s partner in China, Simgui, now uses Soitec’s Smart CutTM technology for RF-SOI wafer production. Together the two are now producing over a million 200mm RF-SOI wafers/year, said Simgui Sr. Director, Kerui Wang. His presentation, RF-SOI – a Secured Substrate Supply Chain, looked at their strategic partnership with Soitec, wherein they use the same tools and processes to deliver the same products meeting the same specs.

Fabs and Fabless

Two leading fabless companies – RDA Microelectronics (which was acquired by Spreadtrum) and SmarterMicro also presented their RF-SOI activities. Although their ppts are not posted, here are a few highlights.

Longtime ASN readers will recall that RDA has been shipping high-volume, RF-SOI based chips to Samsung and others for over five years. In the presentation, RF-SOI in Current and Future RFFE Solutions, Engineering AVP Joseph Jia said that over last two years alone they’ve released almost 50 RFFE (front end) chips on RF-SOI. They see RF-SOI as the right match for switches, tuners and NB-IoT because of the low-voltage and tunability advantages.

SmarterMicro’s CTO, Peter Li, sees RF-SOI as a cornerstone of 5G. In his presentation, Reconfigurable RFFE in 5G, he said the goal is smart systems on fewer dies to decrease size and cost.

Jeff Zhu, assistant director at SMIC, presented SMIC, 0.13um RF-SOI Platform Updates. Mainland China’s largest foundry has recently moved its RF-SOI process from 180 to 130um, and he walked us through some chip designs.

Throughout the day, presenters noted that RF is a great opportunity for China to take a leadership position. As one panelist at the end of the day noted, RF depends more on expertise and talent than digital, which depends more on manpower.

Nanjing: A China RF Capital

Just before the Shanghai events, there was a 2-day event sponsored by the City of Nanjing, co-organized by SOI Industry Consortium and the City of Nanjing. Over 200 participants attended the workshop and tutorials on SOI applications, SoC development and manufacturing, EDA & IP ecosystem, as well as a design tutorial for More than Moore SOI ecosystem. Almost all of those presentations are now posted on the Consortium – click here to get them.

Some of the participants in the SOI Consortium’s delegation also had the opportunity to visit the enormous Nanjing Sofware Park. Nanjing, we learned, is often considered China’s “RF capital”. The list of the world’s major RF players working in partnership there is certainly an international who’s who.

So, lots of good RF-SOI/5G info on the SOI Consortium website – check it out!

~ ~ ~

*in terms of market value and subscribers.

ByAdele Hars

RFSOI Short Course – Great Line-Up! (EuroSOI, March 2018)

RF-SOI is in every smart phone out there, and with 5G, there are lots more applications on the horizon. If you’d like to learn more about designing in RF-SOI, there’s a great short course coming up the day before and in conjunction with the EuroSOI-ULIS Conference in Granada, Spain.

The title of this short course is RFSOI: from basics to practical use of wireless technology. Program and registration details can be found here. The course runs for the full day on Sunday, 18 March 2018.

The talks, which are being given by a stellar line-up of experts, include:

  • RF SOI, fabrication, materials and eco-system – Ionut Radu Director of Advanced R&D, Soitec
  • Fundamentals of RF SOI technology – Jean-Pierre Raskin, Professor, UCL
  • 22nm FDSOI Technology optimized for RF/mmWave Applications – David L. Harame, RF CTO Development and Enablement, GlobalFoundries
  • RF SOI technology and components for 5G connectivity – Christine Raynaud, Program Manager (Business Development – Technology to Design), CEA-Leti
  • Analog and RF design on SOI – Barend van Liempd, Senior Researcher, imec
  • Techniques and tricks for RF measurements on SOI – Andrej Rumiantsev, Director RF Technologies, MPI Corporation
  • FOSS TCAD/EDA tools for advanced SOI-device modeling – Wladek Grabinski, R&D CM Manager, MOS-AK
  • RF design flow for SOI – Ian Dennison, Design Systems Senior Group Director, Cadence

The course is being organized by SOI Consortium members Incize and Soitec.

BTW, this year marks the 4th joint EUROSOI – ULIS Conference. The EuroSOI Conference, which has been ongoing for decades, is well paired with the ULtimate Integration on Silicon Conference. The joint conference provides an interactive forum for scientists and engineers working in the field of SOI technology and advanced nanoscale devices. One of the key objectives is to promote collaboration and partnership between different players from academia, research and industry. As such, it covers technical topics, industry trends and updates from pertinent European programs.

EuroSOI-ULIS will take place 19–21 March 2018 at the University of Granada in Spain. For information on the program and how to register, see the website. Following the conference, the papers will be available at the IEEE Xplore® digital library, and the best papers will be published in a special issue of Solid-State Electronics.

 

 

 

ByAdele Hars

China FD-SOI/RF-SOI Presentations Posted; Events Confirm Tremendous Growth

The FD-SOI and RF-SOI events in Shanghai and Nanjing were absolute success stories. Over the course of five days, hundreds of executives and design engineers packed halls for talks by the leaders of the top ecosystem players, and for tutorials given by the world-renowned design experts.

These annual events have been ongoing in China now for a few years now. Citing the tremendous growth of SOI, Dr. Xi Wang, DG of SIMIT and head of the Chinese Academy of Science in Shanghai said in his keynote, “We’ve come a long way.” Five years ago, he recalled, very few people in China even knew what SOI was. Today the central government has recognized its value, and the ecosystem is riding a wave of growth and strength. A national industrial IC group has been approved for investment, and design/IP are ready. The industry has reached a consensus, he said, that FD-SOI is cost-effective and complementary to Finfet, while RF-SOI has reached an almost 100% adoption rate in front-end switches for mobile phones.

Dr. Xi Wang, DG of SIMIT and head of the Chinese Academy of Sciences in Shanghai giving a keynote address at the 5th Shanghai FD-SOI Forum. (Photo courtesy: Simgui and the SOI Consortium)

Many of the presentations are now publicly available on the Events page of the SOI Consortium website. Here are the links:

(Photo credit: Adele Hars)

Over the next few weeks, I’ll cover the highlights of each of these events. Their success clearly represents a tremendous vote of confidence for the SOI ecosystem in China and worldwide.

The success of these SOI events is a testament to China’s recognition of the great opportunity of SOI-based chip technologies. FD-SOI decreases power consumption and enables deep co-integration of digital, analog, RF, and mm-wave. RF-SOI enables 4G and 5G connectivity with even richer integrated functionalities. It allows the fusion of the RF switch, LNA, and PA, for supporting both traditional sub-6GHz but also mm-wave frequency ranges. SOI technologies also offer a means for China – already the world’s largest chip consumer – to leap to the forefront of chip design and manufacturing,” noted Giorgio Cesana, Executive Co-Director of the SOI Consortium.

The events were followed by top tech news outlets in China. Links follow below (the pieces are in Chinese; or you can open them in Google Translate or Chrome to read them in the language of your choice). Tip: in these pieces you’ll find lots of great pics of key slides, including some that have not been shared on the Consortium website.

FD-SOI coverage included pieces in top pubs such as EETimes China, EEFocus, EDN China (plus a focus piece) and Laoyaoba to name a few. Leading bloggers also posted excellent overviews as well as pieces about specific presentations, including those by Samsung, GlobalFoundries and Handel Jones.

RF-SOI coverage included pieces in leading publications such as China IC, EETimes China, EDN China, EEFocus and SemiInsights.